cs5460/6460: Operating Systems

Final recap, sample questions

Anton Burtsev
April, 2025

1. Stacks and calling conventions

Assume you have the following source code:

int func3(int 4, int e, int f) {

| emmarerirs, PollEv.com/antonburtsev

int func21(int b, int ¢) {
if (b == ¢c) {
return func3(b, c, 0xCCC);

}

return b * c;

int func22(int b, int ¢) {
return func3(b, c, 0xDDD);

int func11(int a) {
return func21(a, a) * func3(a, 0xBA, OxBB);

int funci12(int a) {
return func22(a, a) * func3(a, O0xBA, O0xBB);

int main() {
return func11(0xA) + func12(0xB);
}

Your best friend (who already passed this class last year) sets a breakpoint in one of the
functions, runs the program, hits the breakpoint, and dumps the stack getting the following:

0xffd6c380: 0xffd6c398
Oxffd6c384: 0x565c8567
0xffd6c388: 0x0000000a
Oxffd6c38c: 0x000000ba
0xffd6c390: 0x000000bb
0xf£fd6c394: 0x00000000
0xffd6c398: Oxffd6c3a8
Oxffd6c39c: 0x565c8bae
O0xffd6c3al: 0x0000000a
Oxffd6c3ad: 0x00000000
Oxffd6c3a8: 0x00000000

(a) (5 points) Find out in which function the breakpoint was triggered (explain your work).

A hint from a friend: stack grows down.

https://pollev.com/antonburtsev

1. Stacks and calling conventions

Assume you have the following source code:

int func3(int d, int e, int f) {
return d * e x £ + 5;

}

int

int

int

int

int

func21(int b, int c) {

if (b == ¢) {

return func3(b, c, 0xCCC);

}

return b * c;

func22(int b, int c) {
return func3(b, c, 0xDDD);

func1i1(int a) {
return func21(a, a) * func3(a, 0xBA, 0xBB);

func12(int a) {
return func22(a, a) * func3(a, 0xBA, 0xBB);

main() {
return func11(0xA) + func12(0xB);

PollEv.com/antonburtsev

Oxf£d6c380:
Oxffd6c384:
Oxffd6c388:
Oxffd6c38c:
Oxf£d6c390:
Oxffd6c394:
Oxf£d6c398:
Oxffd6c39c:
Oxffd6c3al:
Oxffd6c3ad:
Oxffd6c3a8B:

Oxf£fd6c398
0x565c8567
0x0000000a
0x000000ba
0x000000bb
O0x00000000
Oxffd6c3a8
0x565c85bae
O0x0000000a
0x00000000
0x00000000

https://pollev.com/antonburtsev

1. Stacks and calling conventions

Assume you have the following source code:

int func3(int 4, int e, int f) {
return d *x e * £ + b;

}
int func21(int b, int ¢) {

if (b == c) {

return func3(b, c, 0xCCC);

}

return b * c;
}
int func22(int b, int ¢) {

return func3(b, c, 0xDDD);
}
int func11(int a) {

return func21(a, a) * func3(a, 0xBA, OxBB);
}
int funci12(int a) {

return func22(a, a) * func3(a, O0xBA, O0xBB);
}

int main() {
return func11(0xA) + func12(0xB);
}

Your best friend (who already passed this class last year) sets a breakpoint in one of the
functions, runs the program, hits the breakpoint, and dumps the stack getting the following:

0xffd6c380: 0xffd6c398
Oxffd6c384: 0x565c8567
0xffd6c388: 0x0000000a
Oxffd6c38c: 0x000000ba
0xf£fd6c390: 0x000000bb
0xf£fd6c394: 0x00000000
0xffd6c398: Oxffd6c3a8
Oxffd6c39c: 0x565c8bae
O0xffd6c3al: 0x0000000a
Oxffd6c3ad: 0x00000000
Oxffd6c3a8: 0x00000000

(b) (5 points) Explain each value on the stack (you can annotate next to the stack drawing
and/or provide some explanation here)

2. xvb6 address space

The following figure represents an address space of an xv6 process:

The page with virtual page number 0 (vpn 0) is mapped to physical address 0x100_0000
(16_777_216).

(a) (5 points) If the physical page at address (0x100_0000) is mapped at some other virtual
addresses, what are those virtual addresses (explain your answer)?

PollEv.com/antonburtsev

https://pollev.com/antonburtsev

2. xvb6 address space

The following figure represents an address space of an xv6 process:

The page with virtual page number 0 (vpn 0) is mapped to physical address 0x100_0000
(16_777_216).

(a) (5 points) If the physical page at address (0x100_0000) is mapped at some other virtual
addresses, what are those virtual addresses (explain your answer)?

1s 1n vpn Z. Which tlags are set 1n the page table tor the pages vpn U, vpn 1, and vpn 2
(explain your answer)?

PTE_P PTE_U PTE_W
VPN O:

VPN 1:

VPN 2:

3. Interrupts

The following is the listing of the release() function in the xv6 kernel.

// Release the lock.
void
release(struct spinlock *1k)
{
if ('holding(1k))
panic("release");

1k->pcs[0] = 0;
1k->cpu = 0;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical

// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and

// stores; __sync_synchronize() tells them both not to.
__sync_synchronize() ;

// Release the lock, equivalent to lk->locked = 0.
// This code can’t use a C assignment, since it might
// not be atomic. A real 0S would use C atomics here.
asm volatile("movl $0, %0" : "+m" (1lk->locked) :);

popcli();
}

(a) (5 points) What is the role of the popcli() function?

3. Interrupts
The following is the listing of the release() function in the xv6 kernel.

// Release the lock.
void
release(struct spinlock *1k)
{
if ('holding(1k))
panic("release");

1k->pcs[0] = 0;
1k->cpu = 0;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical

// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and

// stores; __sync_synchronize() tells them both not to.
__sync_synchronize() ;

// Release the lock, equivalent to lk->locked = 0.
// This code can’t use a C assignment, since it might

// not be atomic. A real 0S would use C atomics here.
asm volatile("movl $0, %0" : "+m" (1lk->locked) :);

popcli();

(b) (10 points) What happens if you comment out invovcation of popcli().

4. xv6 initialization

(a) (5 points) When the swtch function in the xv6 kernel executes for the very first time,
where does it return?

4. xv6 initialization

(a) (5 points) When the swtch function in the xv6 kernel executes for the very first time,
where does it return?

(b) (5 points) In a two-CPU system is it possible that the very first process executes on the
second CPU?

(c) (5 points) In a two-CPU system xv6 creates two GDTSs, can you explain why one is not
enough?

5. Isolation

Recall that in one of our homework assignments when we configured execution of the system
call, we configured the Interrupt Descriptor Table (IDT) to be following;:

SETGATE(idt [T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);

(if you don’t remember your homework, xv6 does the same)

(a) (5 points) Explain why we set the entry to be DPL_USER(3), what will happen if it is 07

(b) (5 points) Recall we also added entries in global descriptor table (GDT) with DPL_USER.
What are the purposes of those entries?

(c) (5 points) In order to go from kernel to user, scheduler must modify system state to run
in user mode. How is it done?

6. System call interface

Alice adds the following program to xv6

#include "types.h"
#include "stat.h"
#include "user.h"

int

main(void)

{
int n;
char *argv[] = { "echo", "hello", 0 };
printf(1, "start\n");

for(n = 0; n < 10; n++) {
fork();
exec("echo", argv);

}

printf (1, "end\n");
exit();
}

(a) (5 points) What are the possible outputs of this program?

CS 5965 ¢

Home

CS 5965 - Advanced OS
Implementation

cs5965 teaches advanced topics in operating systems through a hands-on engineering
approach. As a student in this class you will build a version of a small but functional
operating system. In contrast to previous years this is an implementation-heavy class.
We will use Rust (although other programming languages are ok too) to boot into Rust
and implement core pieces of the operating system: memory allocator, ELF loader, page
table and address spaces, processes and finally context switching and scheduling.

Note: This class is different from CS 6465 2024. In the future the idea is to have two
versions offered despite sharing the same name as the 2024 class The idea is that you
can learn enough about modern commodity operating systems like Linux, hypervisors
like KVM, Xen and VMware, container technologies and a range of cutting edge research
topics that you can either get a job in this area or start working on competitive research.

You will study, in detail, organization of modern commodity kernel like Linux, commodity
hypervisors like KVM and Xen, understand performance and security problems of
modern operating systems. You will further understand major research directions in the
areas of security, performance and reliability of operating systems. We will cover ideas of
microkernels, exokernels, unikernels and library kernels, ideas of retrofitting isolation into
commodity kernels, modern hardware isolation mechanisms, software fault isolation and
WASM, basics of software verification and its potential for development of formally
correct operating systems.

CS 5965 & Home

CS 5965 - Advanced OS
Implementation

cs5965 teaches advanced topics in operating systems through a hands-on engineering
approach. As a student in this class you will build a version of a small but functional
operating system. In contrast to previous years this is an implementation-heavy class.
We will use Rust (although other programming languages are ok too) to boot into Rust
and implement core pieces of the operating system: memory allocator, ELF loader, page
table and address spaces, processes and finally context switching and scheduling.

CS 5965 - 001 ADV OS Implementation
Class Number: 20728 Instructor: BURTSEV, ANTON Component: Special Topics Type: In Person Units: 3.0
Requisites: Yes Wait List: No View Feedback

Learning how a modern operating system really works by reading, understanding, and modifying the source code for an OS kernel. Topics include scheduling,
virtual memory, file systems, traps and interrupts, device drivers, concurrency control. Students will complete a number of programming assignments and also a
more significant final project. Prerequisite: CS 5460

Days / Times Locations
MoWe/03:00PM-04:20PM JTB 120
Meets With

¢ CS 6465 001
VVADIVI, DdSIUS Ul SUINLWdIE VvETTILALUULT dlU 1S pPuULEliudl 101 uevelupliiieris vl worinidily

correct operating systems.

Thank you!

	Slide 1: cs5460/6460: Operating Systems Final recap, sample questions
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

