
Lecture 2: OS Interfaces
cs5460/6460 Operating Systems

Anton Burtsev

January, 2025

Recap: role of the operating system

⚫ Share hardware across multiple processes

⚫ Illusion of private CPU, private memory

⚫ Abstract hardware

⚫ Hide details of specific hardware devices

⚫ Provide services

⚫ Serve as a library for applications

⚫ Security

⚫ Isolation of processes

⚫ Controlled ways to communicate (in a secure manner)

Typical UNIX OS

System calls

⚫ Provide user to kernel communication

⚫ Effectively an invocation of a kernel function

System calls implement the interface of the OS

Which system calls do we need?

System calls, interface for...

⚫ Processes

⚫ Creating, exiting, waiting, terminating

⚫ Memory

⚫ Allocation, deallocation

⚫ Files and folders

⚫ Opening, reading, writing, closing

⚫ Inter-process communication

⚫ Pipes

UNIX (and xv6) system calls are
designed around shell

Why shell?

Ken Thompson (sitting) and Dennis Ritchie (standing) are working together

on a PDP-11 (around 1970). They are using Teletype Model 33 terminals.

https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/PDP-11

DEC LA36 DECwriter II Terminal

DEC VT100 terminal, 1980

Suddenly this makes sense

⚫ List all files

\> ls
total 9212
drwxrwxr-x 3 aburtsev aburtsev 12288 Oct 1 08:27 ./
drwxrwxr-x 43 aburtsev aburtsev 4096 Oct 1 08:25 ../
-rw-rw-r-- 1 aburtsev aburtsev 936 Oct 1 08:26 asm.h
-rw-rw-r-- 1 aburtsev aburtsev 3397 Oct 1 08:26 bio.c
-rw-rw-r-- 1 aburtsev aburtsev 100 Oct 1 08:26 bio.d
-rw-rw-r-- 1 aburtsev aburtsev 6416 Oct 1 08:26 bio.o
…

⚫ Count number of lines in a file (ls.c imlements
ls)

\> wc -l ls.c
85 ls.c

But what is shell?

But what is shell?

⚫ Normal process

⚫ Kernel starts it for each user that logs into the

system

⚫ In xv6 shell is created after the kernel boots

⚫ Shell interacts with the kernel through system
calls

⚫ E.g., starts other processes

What happens underneath?

\> wc -l ls.c

85 ls.c
\>

⚫ Shell starts wc

⚫ Creates a new process to run wc

⚫ Passes the arguments (-l and ls.c)

⚫ wc sends its output to the terminal (console)

⚫ Exits when done with exit()

⚫ Shell detects that wc is done (wait())

⚫ Prints (to the same terminal) its command prompt

⚫ Ready to execute the next command

Console and file I/O

File open

⚫ fd = open(“ls.c”, O_READONLY)

⚫ Open a file

⚫ Operating system returns a file descriptor

File descriptors

File descriptors

⚫ An index into a table, i.e., just an integer

⚫ The table maintains pointers to “file” objects

⚫ Abstracts files, devices, pipes

⚫ In UNIX everything is a file – all objects provide file

interface

⚫ Process may obtain file descriptors through

⚫ Opening a file, directory, device

⚫ By creating a pipe

⚫ Duplicating an existing descriptor

File I/O

⚫ fd = open(“foobar.txt”, O_READONLY) – open a file

⚫ Operating system returns a file desciptor

⚫ read(fd, buf, n) – read n bytes from fd into buf

⚫ write(fd, buf, n) – write n bytes from buf into fd

File descriptors: two processes

Console I/O

Each process has standard file
descriptors

⚫ Numbers are just a convention

⚫ 0 – standard input

⚫ 1 – standard output

⚫ 2 – standard error

⚫ This convention is used by the shell to
implement I/O redirection and pipes

Console read (read of standard intput)

Console write (write of standard output)

Example: cat

1. char buf[512];
2. int n;
3. for(;;) {
4. n = read(0, buf, sizeof buf);
5. if(n == 0)
6. break;
7. if(n < 0) {
8. fprintf(2, "read error\n");
9. exit(); }
10. if(write(1, buf, n) != n) {
11. fprintf(2, "write error\n");
12. exit();
13. }
14. }

Creating processes

fork()

fork()

fork() -- creates a new process

1. int pid;

2. pid = fork();
3. if(pid > 0){
4. printf("parent: child=%d\n", pid);
5. pid = wait();
6. printf("child %d is done\n", pid);
7. } else if(pid == 0){
8. printf("child: exiting\n");
9. exit();
10. } else {
11. printf("fork error\n");
12. }

This is weird... fork() creates copies
of the same process, why?

fork() is used together with exec()

⚫ exec() -- replaces memory of a current process
with a memory image (of a program) loaded
from a file

 char *argv[3];
 argv[0] = "echo";
 argv[1] = "hello";
 argv[2] = 0;
 exec("/bin/echo", argv);
 printf("exec error\n");

fork() and exec()

fork() and exec()

⚫ Still weird... why first fork() and then exec()?

⚫ Why not exec() directly?

I/O Redirection

Motivating example #1

⚫ Normally wc sends its output to the
console (screen)

⚫ Count the number of lines in ls.c
\> wc -l ls.c

85 ls.c

⚫ What if we want to save the number of
lines into a file?

Motivating example #1

⚫ Normally wc sends its output to the
console (screen)

⚫ Count the number of lines in ls.c
\> wc -l ls.c
85 ls.c

⚫ What if we want to save the number of
lines into a file?

⚫ We can add an argument
\> wc -l ls.c -o foobar.txt

Motivating example #1

\> wc -l ls.c -o foobar.txt

⚫ But there is a better way

\> wc -l ls.c > foobar.txt

I/O redirection

⚫ > redirect output

⚫ Redirect output of a command into a file

\> wc -l ls.c > foobar.txt

\> cat ls.c > ls-new.c

⚫ < redirect input

⚫ Redirect input to read from a file

\> wc -l < ls.c

\> cat < ls.c

⚫ You can redirect both

\> wc -l < ls.c > foobar.txt

Standard output is now a file

Powerful design choice

⚫ File descriptors don't have to point to files only

⚫ Any object with the same read/write interface is ok

⚫ Files

⚫ Devices

− Console

⚫ Pipes

Example: cat

1. char buf[512]; int n;
2. for(;;) {
3. n = read(0, buf, sizeof buf);
4. if(n == 0)
5. break;
6. if(n < 0) {
7. fprintf(2, "read error\n");
 exit(); }
1. if(write(1, buf, n) != n) {
2. fprintf(2, "write error\n");
3. exit();
4. }
5. }

Why do we need I/O redirection?

⚫ We want to see how many strings in ls.c
contain “main”

Motivating example #2

⚫ We want to see how many strings in ls.c contain
“main”

⚫ Imagine we have grep

− grep filters strings matching a pattern
\>grep "main" ls.c

main(int argc, char *argv[])

⚫ Or the same written differently

\>grep "main" < ls.c

main(int argc, char *argv[])

Motivating example #2

⚫ Now we have

⚫ grep

− Filters strings matching a pattern

⚫ wc -l

− Counts lines

⚫ Can we combine them?

Motivating example #2

Pipes

⚫ Imagine we have a way to redirect output
of one process into input of another

 \> cat ls.c | grep main

⚫ |(a “pipe”) does redirection

Pipes

⚫ In our example:

 \> cat ls.c | grep main

⚫ cat outputs ls.c to its output

⚫ cat's output is connected to grep's input with

the pipe

⚫ grep filters lines that match a specific criteria,

i.e., once that have “main”

pipe - inter-process communication

⚫ Pipe is a kernel buffer exposed as a pair of file
descriptors

⚫ One for reading, one for writing

⚫ Pipes allow processes to communicate

⚫ Send messages to each other

Two file descriptors pointing to a pipe

Pipes allow us to connect programs,

i.e., the output of one program to the input of
another

Composability

⚫ Now if we want to see how many strings in ls.c contain
“main” we do:

\> cat ls.c | grep main | wc -l

1
⚫ .. but if we want to count the once that contain “a”:

cat ls.c | grep a | wc -l

33
⚫ We change only input to grep!

⚫ Small set of tools (ls, grep, wc) compose into complex

workflows

Better than this...

Building I/O redirection

How can we build this?

\> cat ls.c | grep main | wc -l

⚫ wc has to operate on the output of grep

⚫ grep operates on the output of cat

Back to fork()

fork()

File descriptors after fork()

Two system calls for I/O redirection

⚫ close(fd) – closes file descriptor

⚫ The next opened file descriptor will have the

lowest number

File descriptors after close()/open()
Example: \> cat < ls.c

Two system calls for I/O redirection

⚫ close(fd) – closes file descriptor

⚫ The next opened file descriptor will have the

lowest number

⚫ exec() replaces process memory, but

⚫ leaves its file descriptor table intact

⚫ A process can create a copy of itself with fork()

⚫ Change the file descriptors for the next program it is

about to run

⚫ And then execute the program with exec()

File descriptors after exec()
Example: \> cat < ls.c

Example: \> cat < ls.c

1. char *argv[2];
2. argv[0] = "cat";
3. argv[1] = 0;
4. if(fork() == 0) {
5. close(0);
6. open("ls.c", O_RDONLY);
7. exec("cat", argv);
8. }
9. …
⚫ Poll time

⚫ Inside the cat process the file descriptor 0 points to
which file?

⚫ Do we reach line 9?

Why fork() not just exec()

⚫ The reason for the pair of fork()/exec()

⚫ Shell can manipulate the new process (the copy

created by fork())

⚫ Before running it with exec()

Back to Motivating example #2

(\> cat ls.c | grep main | wc -l)

Pipes

⚫ We now understand how to use a pipe to
connect two programs

⚫ Create a pipe

⚫ Fork

⚫ Attach one end to standard output

− of the left side of “|”

⚫ Another to the standard input

− of the right side of “|”

wc on the
read end of
the pipe

1. int p[2];
2. char *argv[2];
3. argv[0] = "wc";
4. argv[1] = 0;
5. pipe(p);
6. if(fork() == 0) {
7. close(0);
8. dup(p[0]);
9. close(p[0]);
10. close(p[1]);
11. exec("/bin/wc", argv);
12. } else {
13. write(p[1], "hello world\n", 12);
14. close(p[0]);
15. close(p[1]);
16. }

Powerful conclusion

⚫ fork(), standard file descriptors, pipes and exec()
allow complex programs out of simple tools

⚫ They form the core of the UNIX interface

More system calls

Process management

⚫ exit() -- terminate current process

⚫ wait() -- wait for the child to exit

⚫ Any child (can be multiple)

⚫ Return it’s process id (pid)

Creating files

⚫ mkdir() – creates a directory

⚫ open(…, O_CREATE) – creates a file

⚫ mknod() – creates an empty file marked as
device

⚫ Major and minor numbers uniquely identify the

device in the kernel

⚫ fstat() – retrieve information about a file

Links, inodes

⚫ Same file can have multiple names – links

⚫ But unique inode number

⚫ link() – create a link

⚫ unlink() – delete file

⚫ Example, create a temporary file

 fd = open("/tmp/xyz", O_CREATE|O_RDWR);
 unlink("/tmp/xyz");

Xv6 system
calls

fork() Create a process

exit() Terminate the current process

wait() Wait for a child process to exit

kill(pid) Terminate process pid

getpid() Return the current process’s pid

sleep(n) Sleep for n clock ticks

exec(filename, *argv) Load a file and execute it

sbrk(n) Grow process’s memory by n bytes

open(filename, flags) Open a file; the flags indicate read/write

read(fd, buf, n) Read n bytes from an open file into buf

write(fd, buf, n) Write n bytes to an open file

close(fd) Release open file fd

dup(fd) Duplicate fd

pipe(p) Create a pipe and return fd’s in p

chdir(dirname) Change the current directory

mkdir(dirname) Create a new directory

mknod(name, major, minor) Create a device file

fstat(fd) Return info about an open file

link(f1, f2) Create another name (f2) for the file f1

unlink(filename) Remove a file

In many ways xv6 is very similar to
the operating systems we run today

Evolution of Unix and Unix-like systems https://en.wikipedia.org/wiki/History_of_Unix

https://en.wikipedia.org/wiki/History_of_Unix

Evolution of Unix and Unix-like systems (another view)

Speakers from the 1984 Summer USENIX Conference (Salt Lake City, UT)

USENIX was founded in 1975, focusing primarily on the study and development of Unix and

similar systems.

Backup slides

Pipes

⚫ Shell composes simple utilities into more
complex actions with pipes, e.g.

 grep FORK sh.c | wc -l

⚫ Create a pipe and connect ends

System call

User address space

Kernel address space

Kernel and user address spaces

	Slide 1: Lecture 2: OS Interfaces cs5460/6460 Operating Systems
	Slide 2: Recap: role of the operating system
	Slide 3: Typical UNIX OS
	Slide 4: System calls
	Slide 6: Which system calls do we need?
	Slide 7: System calls, interface for...
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Suddenly this makes sense
	Slide 14: But what is shell?
	Slide 15: But what is shell?
	Slide 16: What happens underneath?
	Slide 17
	Slide 18: File open
	Slide 19: File descriptors
	Slide 20: File descriptors
	Slide 21: File I/O
	Slide 22: File descriptors: two processes
	Slide 23
	Slide 24: Each process has standard file descriptors
	Slide 25: Console read (read of standard intput)
	Slide 26: Console write (write of standard output)
	Slide 27: Example: cat
	Slide 28
	Slide 29: fork()
	Slide 30: fork()
	Slide 31: fork() -- creates a new process
	Slide 32: This is weird... fork() creates copies of the same process, why?
	Slide 33: fork() is used together with exec()
	Slide 34: fork() and exec()
	Slide 35: fork() and exec()
	Slide 36
	Slide 37
	Slide 38: Motivating example #1
	Slide 39: Motivating example #1
	Slide 40: Motivating example #1
	Slide 41: I/O redirection
	Slide 42: Standard output is now a file
	Slide 43: Powerful design choice
	Slide 44: Example: cat
	Slide 45
	Slide 46: Motivating example #2
	Slide 47: Motivating example #2
	Slide 48: Motivating example #2
	Slide 49: Pipes
	Slide 50: Pipes
	Slide 51: pipe - inter-process communication
	Slide 52: Two file descriptors pointing to a pipe
	Slide 53
	Slide 54: Composability
	Slide 55: Better than this...
	Slide 56
	Slide 57: How can we build this?
	Slide 58: Back to fork()
	Slide 59: fork()
	Slide 60: File descriptors after fork()
	Slide 61: Two system calls for I/O redirection
	Slide 62: File descriptors after close()/open()
	Slide 63: Two system calls for I/O redirection
	Slide 64: File descriptors after exec()
	Slide 65: Example: \> cat < ls.c
	Slide 66: Why fork() not just exec()
	Slide 67
	Slide 68: Pipes
	Slide 69: wc on the read end of the pipe
	Slide 70
	Slide 71: Powerful conclusion
	Slide 72
	Slide 73: Process management
	Slide 74: Creating files
	Slide 75: Links, inodes
	Slide 76: Xv6 system calls
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: Pipes
	Slide 83: System call
	Slide 84: User address space
	Slide 85: Kernel address space
	Slide 86: Kernel and user address spaces

