
cs5460/6460 Operating Systems

Lecture 03: x86 instruction set

Anton Burtsev

January, 2025

How do CPUs work internally?

CPU execution

loop
• CPU repeatedly reads

instructions from memory

• Executes them

• Example

ADD EDX, EAX

// EDX = EAX + EDX

What are those instructions?

(a brief introduction to x86
instruction set)

This part is based on David Evans’ x86 Assembly Guide

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

and Yale FLINT’s group version of the same manual converted to GNU
ASM syntax

https://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
https://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html

Note

• We’ll be talking about 32bit x86 instruction set

• The version of xv6 we will be using in this class
is a 32bit operating system

• You’re welcome to take a look at the 64bit port

x86 instruction set

• The full x86 instruction set is large and complex

• But don’t worry, the core part is simple

• The rest are various extensions (often you can
guess what they do, or quickly look it up in the
manual)

x86 instruction set

• Three main groups

• Data movement (from memory and between
registers)

• Arithmetic operations (addition, subtraction,
etc.)

• Control flow (jumps, function calls)

General registers

● 8 general registers

● 32bits each

● Two (ESP and EBP)

have a special role

● Others are more or less

general

● Used in arithmetic

instructions, control flow

decisions, passing

arguments to functions,

etc.

BTW, where are these registers?

Registers and Memory

Data movement instructions

We use the following notation

<reg32> Any 32-bit register (EAX,EBX,ECX,EDX,ESI,EDI,ESP,EBP)

<reg16> Any 16-bit register (AX, BX, CX, or DX)

<reg8> Any 8-bit register (AH, BH, CH, DH, AL, BL, CL, DL)

<reg> Any register

<mem> A memory address (e.g., [eax], [var + 4],

 or dword ptr [eax+ebx])

<con32> Any 32-bit constant

<con16> Any 16-bit constant

<con8> Any 8-bit constant

<con> Any 8-, 16-, or 32-bit constant

mov instruciton

● Copies the data item referred to by its second operand (i.e.
register contents, memory contents, or a constant value) into
the location referred to by its first operand (i.e. a register or
memory).

● Register-to-register moves are possible

● Direct memory-to-memory moves are not

● Syntax

mov <reg>,<reg>

mov <reg>,<mem>

mov <mem>,<reg>

mov <reg>,<const>

mov <mem>,<const>

mov examples

mov eax, ebx ; copy the value in ebx into eax

mov byte ptr [var], 5 ; store 5 into the byte at location var

mov eax, [ebx] ; Move the 4 bytes in memory at the address

 ; contained in EBX into EAX

mov [var], ebx ; Move the contents of EBX into the 4 bytes

 ; at memory address var.

 ; (Note, var is a 32-bit constant).

mov eax, [esi-4] ; Move 4 bytes at memory address ESI + (-4)

 ; into EAX

mov [esi+eax], cl ; Move the contents of CL into the byte at

 ; address ESI+EAX

mov: access to data structures

struct point {

 int x; // x coordinate (4 bytes)

 int y; // y coordinate (4 bytes)

}

struct point points[128]; // array of 128 points

// load y coordinate of i-th point into y

int y = points[i].y;

; ebx is address of the points array, eax is i

mov edx, [ebx + 8*eax + 4] ; Move y of the i-th

 ; point into edx

lea load effective address

• The lea instruction places the address specified

by its second operand into the register specified

by its first operand

• The contents of the memory location are not
loaded, only the effective address is computed
and placed into the register

• This is useful for obtaining a pointer into a
memory region

lea vs mov access to data structures
• mov

// load y coordinate of i-th point into y

int y = points[i].y;

; ebx is address of the points array, eax is i

mov edx, [ebx + 8*eax + 4] ; Move y of the i-th point into edx

• lea

// load the address of the y coordinate of the i-th point into p

int *p = &points[i].y;

; ebx is address of the points array, eax is i

lea esi, [ebx + 8*eax + 4] ; Move address of y of the i-th point

 ; into esi

lea is often used instead of add

• Compared to add, lea can

• perform addition with either two or three operands

• store the result in any register; not just one of the source
operands.

• Examples

LEA EAX, [EAX + EBX + 1234567]

 ; EAX = EAX + EBX + 1234567 (three operands)

LEA EAX, [EBX + ECX] ; EAX = EBX + ECX

 ; Add without overriding EBX or ECX with the result

LEA EAX, [EBX + N * EBX] ; multiplication by constant

 ; (limited set, by 2, 3, 4, 5, 8, and 9 since N is

 ; limited to 1,2,4, and 8).

Arithmetic and logic instructions

add Integer addition

• The add instruction adds together its two operands,
storing the result in its first operand

• Both operands may be registers

• At most one operand may be a memory location

• Syntax

add <reg>,<reg>

add <reg>,<mem>

add <mem>,<reg>

add <reg>,<con>

add <mem>,<con>

add examples

add eax, 10 ; EAX ← EAX + 10

add BYTE PTR [var], 10 ; add 10 to the

 ; single byte stored at

 ; memory address var

sub Integer subtraction

• The sub instruction stores in the value of its first

operand the result of subtracting the value of its

second operand from the value of its first

operand.

• Examples

sub al, ah ; AL ← AL - AH

sub eax, 216 ; subtract 216 from the value

 ; stored in EAX

inc, dec Increment, decrement

• The inc instruction increments the contents of its
operand by one

• The dec instruction decrements the contents of its
operand by one

• Examples

dec eax ; subtract one from the contents

 ; of EAX

inc DWORD PTR [var] ; add one to the 32-

 ; bit integer stored at

 ; location var

and, or, xor Bitwise logical and, or,

and exclusive or

• These instructions perform the specified logical

operation (logical bitwise and, or, and exclusive

or, respectively) on their operands, placing the

result in the first operand location

• Examples

and eax, 0fH ; clear all but the last 4

 ; bits of EAX

xor edx, edx ; set the contents of EDX to

 ; zero

shl, shr shift left, shift right
• These instructions shift the bits in their first operand's contents left and right,

padding the resulting empty bit positions with zeros

• The shifted operand can be shifted up to 31 places. The number of bits to

shift is specified by the second operand, which can be either an 8-bit

constant or the register CL

• In either case, shifts counts of greater then 31 are performed modulo 32.

• Examples

shl eax, 1 ; Multiply the value of EAX by 2

 ; (if the most significant bit is 0)

shr ebx, cl ; Store in EBX the floor of result of dividing

 ; the value of EBX by 2^n

 ; where n is the value in CL.

More instructions… (similar)

• Multiplication imul

imul eax, [var] ; multiply the contents of EAX by the

 ; 32-bit contents of the memory

 ; location var. Store result in EAX

imul esi, edi, 25 ; ESI ← EDI * 25

• Division idiv

• not - bitvise logical not (flips all bits)

• neg - negation

neg eax ; EAX ← - EAX

This is enough to do arithmetic

Poll Q1: What is inside ebx?

• After we execute the mov instruction?

; eax = 2

; ebx = 3

mov ebx, eax

; what is the value of eax here?

Poll Q2: What is this instruction

doing?
mov ebx, [eax]

; Is it writing memory? Or reading it?

Poll Q3: Is this a legal instruction

mov [ebx], [eax]

Control flow instructions

EIP instruction pointer

• EIP is a 32bit value indicating the location in

memory where the current instruction starts

(i.e., memory address of the instruction)

• EIP cannot be changed directly

• Normally, it increments to point to the next
instruction in memory

• But it can be updated implicitly by provided
control flow instructions

Labels

• <label> refers to a labeled location in the

program text (code).

• Labels can be inserted anywhere in x86

assembly code text by entering a label name

followed by a colon

• Examples

 mov esi, [ebp+8]

begin: xor ecx, ecx

 mov eax, [esi]

jump: jump

• Transfers program control flow to the instruction at

the memory location indicated by the operand.

• Syntax

 jmp <label>

• Example

begin: xor ecx, ecx

 ...

 jmp begin ; jump to instruction labeled

 ; begin

jcondition: conditional jump

• Jumps only if a condition is true

• The status of a set of condition codes that are stored in a special

register (EFLAGS)

• EFLAGS stores information about the last arithmetic operation

performedm for example,

• Bit 6 of EFLAGS indicates if the last result was zero

• Bit 7 indicates if the last result was negative

• Based on these bits, different conditional jumps can be performed

• For example, the jz instruction performs a jump to the specified

operand label if the result of the last arithmetic operation was zero

• Otherwise, control proceeds to the next instruction in sequence

Conditional jumps

• Most conditional jump follow the comparison instruction (cmp, we’ll cover it below)

• Syntax

 je <label> (jump when equal)

 jne <label> (jump when not equal)

 jz <label> (jump when last result was zero)

 jg <label> (jump when greater than)

 jge <label> (jump when greater than or equal to)

 jl <label> (jump when less than)

 jle <label> (jump when less than or equal to)

• Example: if EAX is less than or equal to EBX, jump to the label done. Otherwise,
continue to the next instruction

 cmp eax, ebx

 jle done

cmp: compare

• Compare the values of the two specified operands, setting the condition

codes in EFLAGS

• This instruction is equivalent to the sub instruction, except the result of the

subtraction is discarded instead of replacing the first operand.

• Syntax

 cmp <reg>,<reg>

 cmp <reg>,<mem>

 cmp <mem>,<reg>

 cmp <reg>,<con>

• Example: if the 4 bytes stored at location var are equal to the 4-byte integer
constant 10, jump to the location labeled loop.

 cmp DWORD PTR [var], 10

 jeq loop

Poll Q1: What is inside ebx?

• After we execute the mov instruction?

; eax = 2

; ebx = 3

mov ebx, eax

; what is the value of ebx here?

Poll Q2: What is this instruction

doing?
mov ebx, [eax]

; Is it writing memory? Or reading it?

Poll Q3: Is this a legal instruction

mov [ebx], [eax]

Stack and procedure calls

What is stack?

Stack

• It's just a region of

memory

• Pointed by a special
register ESP

• You can change ESP

• Get a new stack

Why do we need stack?

Calling functions

// some code...
foo();
// more code..

• Stack contains
information for how to
return from a
subroutine

• i.e., from foo()

• Functions can be
called from different
places in the program

 if (a == 0) {
 foo();
 …

 } else {

 foo();

 …

 }

Stack

• Main purpose:

• Store the return address
for the current procedure

• Caller pushes return
address on the stack

• Callee pops it and jumps

Stack

• Main purpose:

• Store the return address
for the current procedure

• Caller pushes return
address on the stack

• Callee pops it and jumps

Call/return

• CALL instruction

• Makes an unconditional jump to a subprogram and
pushes the address of the next instruction on the
stack

 push eip + sizeof(CALL) ; save return

 ; address

 jmp _my_function

• RET instruction

• Pops off an address and jumps to that address

Stack

• Other uses:

• Local data storage

• Parameter passing

• Evaluation stack

• Register spill

Manipulating

stack
• ESP register

• Contains the
memory address of
the topmost element
in the stack

• PUSH instruction

 push 0xBAR

• Subtract 4 from ESP

• Insert data on the
stack

Manipulating

stack

• POP instruction

 pop EAX

• Removes data from
the stack

• Saves in register or
memory

• Adds 4 to ESP

Thank you!

Some examples

	Default Section
	Slide 1: cs5460/6460 Operating Systems Lecture 03: x86 instruction set
	Slide 2
	Slide 3: CPU execution loop
	Slide 4
	Slide 5
	Slide 6: Note
	Slide 7: x86 instruction set
	Slide 8: x86 instruction set
	Slide 9: General registers
	Slide 10: BTW, where are these registers?
	Slide 11: Registers and Memory
	Slide 15
	Slide 16: We use the following notation
	Slide 17: mov instruciton
	Slide 18: mov examples
	Slide 19: mov: access to data structures
	Slide 20: lea load effective address
	Slide 21: lea vs mov access to data structures
	Slide 22: lea is often used instead of add
	Slide 23
	Slide 24: add Integer addition
	Slide 25: add examples
	Slide 26: sub Integer subtraction
	Slide 27: inc, dec Increment, decrement
	Slide 28: and, or, xor Bitwise logical and, or, and exclusive or
	Slide 29: shl, shr shift left, shift right
	Slide 30: More instructions… (similar)
	Slide 31: This is enough to do arithmetic
	Slide 32: Poll Q1: What is inside ebx?
	Slide 33
	Slide 34: Poll Q2: What is this instruction doing?
	Slide 35
	Slide 36: Poll Q3: Is this a legal instruction
	Slide 37
	Slide 38
	Slide 39
	Slide 40: EIP instruction pointer
	Slide 41: Labels
	Slide 42: jump: jump
	Slide 43: jcondition: conditional jump
	Slide 44: Conditional jumps
	Slide 45: cmp: compare
	Slide 46: Poll Q1: What is inside ebx?
	Slide 47
	Slide 48: Poll Q2: What is this instruction doing?
	Slide 49
	Slide 50: Poll Q3: Is this a legal instruction
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Stack
	Slide 55
	Slide 56: Calling functions
	Slide 57: Stack
	Slide 58: Stack
	Slide 59: Call/return
	Slide 60: Stack
	Slide 61: Manipulating stack
	Slide 62: Manipulating stack
	Slide 63
	Slide 64: Some examples

