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Two programs one memory

Save/restore




Two programs one memory

« How can we do
this?

Save/restore

D)




Relocation

* One way to achieve this is to relocate program
at different addresses

* Remember relocation?



Relocate binaries to work at different
addresses

Process 1 (Is) Process 2 (Is)

0x0
0x110000
0x210000

(free)
- 0x100000

Process
text
Process
data
Process
heap
(free)
Process
stack

Memory

Relocate to start at 0x110000




* One way to achieve this is to relocate program
at different addresses

 Remember relocation?

* This works! But not ideal
* What s the problem?



Relocate binaries to work at different
addresses

Process 1 (Is) Process 2 (Is)

o
Fad
=1
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0x110000
0x210000

D
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(free)
-Uﬂ[]ﬂﬂﬂﬂ
Proces
text
Process
data
Process
heap
(free)
P
tack

Memory

Relocate to start at 0x110000

* What is the problem?



|Isolation



« What if one faulty program corrupts the kernel?
* Or other programs?

Isolation




No Isolation: open space office




No Isolation: open space office
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|solated rooms




Problem: isolation

e How can we enforce isolation?



Problem: i1solation

« How can we enforce isolation?
* |solation can be enforced In software
» Software Fault Isolation (SFI)

* Google NaCl (Chrome Sandbox)

« WASM (Web Assembly, another sandbox
standard)



Actually, how?

#include <stdio.h>

int main(int ac, char **av)

{
inta=5, b=6;
return a + b;
}
00000000 <main>:
0: 55 push ebp
1: 89 e5 mov ebp,esp
3: 83ecl0 sub esp,0x10
6: c745f805000000 mov DWORD PTR [ebp-0x8],0x5
d: ¢c745fc06 000000 mov DWORD PTR [ebp-0x4],0x6
14: 8b 45 fc mov eax,DWORD PTR [ebp-0x4]
17: 8b 55f8 mov edx,DWORD PTR [ebp-0x8]
la: 01dO add eax,edx
1lc: c9 leave

1d: c3 ret



PollEv.com/antonburtsev

#include <stdio.h>

int main(int ac, char **av)

{
inta=>5, b=6;
return a + b;

}

00000000 <main>:

0: 55 push ebp

1: 89 e5 mov ebp,esp

3: 83ecl0 sub esp,0x10

6: c745f805000000 mov DWORD PTR [ebp-0x8],0x5
d: ¢c745fc06 000000 mov DWORD PTR [ebp-0x4],0x6
14: 8b 45 fc mov eax,DWORD PTR [ebp-0x4]

17: 8b 55f8 mov edx,DWORD PTR [ebp-0x8]

la: 01dO add eax,edx

1lc: c9 leave

1d: c3 ret


https://pollev.com/aburtsev

Detour: Software Fault Isolation
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Native Client: A Sandbox for Portable, Untrusted x86 Native Code
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Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar
Google Inc.

Abstract

This paper describes the design, implementation and eval-
uation of Native Client, a sandbox for untrusted x86 native
code. Native Client aims to give browser-based applications
the computational performance of native applications with-
out compromising safety. Native Client uses software fault
isolation and a secure runtime to direct system interaction
and side effects through interfaces managed by Native
Client. Native Client provides operating system portability
for binary code while supporting performance-oriented fea-
tures generally absent from web application programming
environments, such as thread support, instruction set ex-
tensions such as SSE, and use of compiler intrinsics and
hand-coded assembler. We combine these properties in an
open architecture that encourages community review and
3rd-party tools.

1. Introduction

As an application platform, the modern web browser
brings together a remarkable combination of resources,
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as a secondary consideration. Given this organization, and
the absence of effective technical measures to constrain
these plugins, browser applications that wish to use native-
code must rely on non-technical measures for security; for
example, manual establishment of trust relationships through
pop-up dialog boxes, or manual installation of a console
application. Historically, these non-technical measures have
been inadequate to prevent execution of malicious native
code, leading to inconvenience and economic harm [10],
[54]. As a consequence we believe there is a prejudice
against native code extensions for browser-based applica-
tions among experts and distrust among the larger population
of computer users.

While acknowledging the insecurity of the current systems
for incorporating native-code into web applications, we also
observe that there is no fundamental reason why native
code should be unsafe. In Native Client, we separate the
problem of safe native execution from that of extending trust,
allowing each to be managed independently. Conceptually,
Native Client is organized in two parts: a constrained ex-
ecution environment for native code to prevent unintended
side effects, and a runtime for hosting these native code
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Short primer on SFI (x86 NaCl,

rax

Wasm)

upper bits

lower bits (0 ~ 4GB)

r15

MoV eax, eax

rax

segment

0x0

0000...0000

lower bits (0 ~ 4GB)

mov rax, [rax + r15]

target address

1 ; load value at [rax] to rcx
2 mov eax, eax ; eax contains 0-4GB

3 mov rex, [r15, rax, 1] ;memory access within [r15 + 0-4GB]

segment

lower bits (0 ~ 4GB)




SFI on ARM

x10

upper bits

lower bits (0 ~ 4GB)

x28

segment

bfi x10, x28, #32, #32

x10

segment

lower bits (0~ 4GB)

|

ldr x10, [x10]
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SPEC 2006 and 2017 on ARM

4
3.5

2.5

1.5

0.5

Average overhead

77777777 18%
******** A 4 F- (o I me [ 1 pac I
] ] ] ] ] T < |1 ]
/i/\Qq' {(é\ NS ,béb 60(0 . Q}\Q “Qo‘? q‘;Ob‘ Q @
o N NS Ng Ne NS NS NS B B



Overheads normalized to C

SPEC 2006 and 2017 on x86 [i il

17.4%
2-5 -1 o C o L o A o
o :
o mpk I nacl I segue 1
15 _ _____ S
1 —
0.5 — I I
0
& - R
N & @bs N\ \0 ¥ &
,\‘0/1’ g\tb ’\\ *(\q’ O rb \0 (\ O(Q +‘b '\’Q)

‘b’k%’va"b’f-bQ?bv@‘
@&”@v"‘@@vv@@@@&&@



Another way Is to ask for
hardware support



Segmentation



What are we aiming for?

* lllusion of a private address space

* |dentical copy of an address space in multiple
programs

« Simplifies software architecture

* One program is not restricted by the memory
layout of the others



Two processes, one memory?

Process 2 (lIs)
Process 1 (lIs)

Memory




Two processes, one memory?

Process 1 (Is)

Process 2 (lIs)

basep,

basep,

Memory

X + basep,

X+ baSE‘pz

e We want

nardware to add base value to every
address used In the program




Seems easy

* One problem
« Where does this base address come from?




Seems easy

One problem

Where does this base address come from?

lardware can maintain a table of base
addresses

* One base for each process

Dedicate a special register to keep an index
Into that table



Selector
Register

Global table of
bases

Ox0

0x110000

One problem
Where does this base address come from?

Hardware can maintain a table of base
addresses

 One base for each process

Dedicate a special register to keep an index
Into that table

Process 2 (Is)
Process 1 (Is)

Memaory

* addr + basep, basep,

X+ basePl X+ bESEpz




Segmentation: example

Physical Memory

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX

EAX = 0x0

EBX = 0x300010

Process 1 (Is)

Process 2 (lIs)

0x55 |+——

o
[Tp1
=
=
0x0 0x300010 0x0 | ex3000160
Jv r l
i
x '
0x110000 0x410010 Ox%510000 0x810010

Bx0




Segmentation: address consists of two parts

Segment register

(CS, SS, DS, ES, FS, GS) mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX = 0x0
Ox1 EBX = 0x300010, DS = Ox1
Process 1 (Is) 1 Process 2 (Is)
; ;
0x0 0x300010 0x0 0x300010
1 v 1
" I'a]
Physical Memory P %
0x0 Bx116000 0x410010 0x510800 0x810010

« Segment register contains segment selector
» General registers contain offsets

 Intel calls this address: “logical address”



Segmentation: Global Descriptor Table

Segment register

(CS, SS, DS, ES, FS, GS) mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX = 0x0
Bx1 EBX = 0x300010, DS = Ox1

Global Descriptor Table

P 2 (1
(table of segment rocess 2 (Is)

Process 1 (Is)

0x55 |+—

sizes and bases)
i
9x0 S
— | Ox110000 i L
Bx518000 9x3000106 B8 Ox300010
l L 4
) L n
Physical Memory 2 2
= =]
Ox0 0x110000 0x4100180 Ox510000 0x810010

« GDT is an array of segment descriptors
« Each descriptor contains base and limit for the segment

* Plus access control flags



Segmentation: Global Descriptor Table

Segment register

(CS, SS, DS, ES, FS, GS) mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX = 0x0
Ox1 EBX = 0x300010, DS = 0x1
Global Descriptor Table
(table of sé}gment Process 1 (Is) l Process 2 (Is)
sizes and bases)
u (Fe)
g 12
ax@ ‘Q =
—* | Ox110800
0x510000 0x300010 0x0 0x300010
l w
Bl
. 6116660 un o
Physical Memory xsiosee B 2
Ox@ 0x110000 0x410010 0x5160000 0x810010
0x7095 |——

. Ox7095
GDT register
(pointer to the GDT,

Physical aderess) o Location of GDT in physical memory is pointed by the
GDT register



Segmentation: base + offset

Segment register

(CS, SS, DS, ES, FS, GS)

Ox1

sizes and bases)

ax8

— | 0x110000
0x510000

Physical Memory

0x7095 |—

Global Descriptor Table
(table of segment

basep;

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX = 0x0
EBX = 0x300010, DS = O0x1

Process 1 (Is) Process 2 (Is)

0x55 |4+——

0x56

| 0x0 0x300010 ox@ 0x300010

L
\ﬂxuaﬂaau/_‘l:\ 0x1106000
NS

_

addr + base P1 ‘
- L 4

Bl
Ax1166866
x5 18680

| 0x55

| 0x56

9
Ox@ 0x110000 0x410010 0x5160000 0x810010

GDT register
(pointer to the GDT,
physical address)

Ox7095

« Segment register (0x1) chooses an entry in GDT

« This entry contains base of the segment (0x110000)
and limit (size) of the segment (not shown)



Segmentation: base + offset

Segment register

(CS, SS, DS, ES, FS, GS)

Ox1

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX

EAX = 0x0
EBX = 0x300010, DS = 0x1

Global Descriptor Table
Process 2 (Is
(table of segment Process 1 (Is) l (Is)
sizes and bases)
w w
g 12
0x0 basep; = S
— | Ox110000
0x510000 4 @%@ 0x300010 0x@ 0x300010
e \@ﬂmﬂmh@\ 0x110000 |
N 0x300010
addr + base p, | + 0x110000
Al
. 6116660 un o
Physical Memory 8516600 2 E:
[ L=
Ox@ 0x110000 0x410010 0x5160000 0x810010
@K?@gs _I X X
Ox7095

GDT register
(pointer to the GDT,

Physicaladdress) o Physical address:
¢ 0x410010 = 0x300010 (offset) + 0x110000 (base)
Intel calls this address “linear”



Segmentation: process 2

Segment register

(CS, S5, DS, ES, FS, GS)

Dx1

(table of segmen
sizes and bases)

0x8

b

EAX = 0x0

EBX = 0x300010, DS = 0x1

Global Descriptor Table

t

basep;

w

Bx510000

Physical Memory

0x890000 | ——

\\\\\\\kax51aaaa

Process 1 (Is)

Process 2 (Is)

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX

L
7]
x
=]

x5

axB

[ﬂxaaaﬂm Loxe

0x308010

GDT register
(pointer to the GDT,
physical address)

B=e Bx3I00010
addr + base + Bx510000 + Ox510000
r
(oh Bxch
M L B 518050
e B E
F 3
08 0x1100080 0x410010 0x510000 0x816010
0x890000

Each process has a private GDT

» Alternatively you change the content of GDT

OS switches between GDTs




New addressing mode:
“logical addresses”



All addresses are logical address

* They consist of two parts
e Segment selector (16 bit) + offset (32 bit)

15 0 31(63) 0

Logical :
Address |L.S€9. Selector Offset (Effective Address)
Y

Descriptor Table

5| Segment Base Address

Descriptor

»

Y
+
31(63) i 0

Linear Address




Segment selector (16 bit)
Is simply an index into an array (Descriptor Table)
That holds segment descriptors

« Base and limit (size) for each segment

Logical L 0 31(63) 0
Address Lo€9. Selector Offset (Effective Address)

Y

Descriptor Table

Segment
> Descriptor

Y
<+
31(63) l 0

Linear Address




Elements of the descriptor table are
segment descriptors

Base address

. Access Limit
- Base Address
Limit (size)

« 0-4GB

Access rights
« Executable, readable, writable

Privilege level (0 - 3)



» Offsets into segments (X In our example) or
“effective addresses” are In registers

Logical
Address

15 0

Segq. Selector

v

Descriptor Table

Ly | Segment
Descriptor

31(63)

0

Offset (Effective Address)

Base Address

>

Y
+
31(63) l

Linear Address




* Logical addresses are translated into physical
« Effective address + DescriptorTable[selector].Base

15 0 31(63) 0
Segq. Selector Offset (Effective Address)

v

Descriptor Table

Logical
Address

Base Address

Ly | Segment
Descriptor

>

Y
<+
31(63) l 0

Linear Address




* Logical addresses are translated into physical
« Effective address + DescriptorTable[selector].Base

15 0 31(63) 0
Segq. Selector Offset (Effective Address)

Y

Descriptor Table

Logical
Address

Base Address

Ly | Segment
Descriptor

>

Y
<+
31(63) l 0

Linear Address




* Logical addresses are translated into physical
« Effective address + DescriptorTable[selector].Base

15 0 31(63) 0
Segq. Selector Offset (Effective Address)

Y

Descriptor Table

Logical
Address

+ | =

Base Address

Lyt | Segment
Descriptor

>

31(63) Y 0
Linear Address




* Logical addresses are translated into physical
« Effective address + DescriptorTable[selector].Base

15 0 31(63) 0
Segq. Selector Offset (Effective Address)

Y

Descriptor Table

Logical
Address

+ | =

Base Address

Lyt | Segment
Descriptor

>

31(63) Y 0
Linear Address




Physical address = Effective address +
DescriptorTable[selector].Base

Effective addresses (or offsets) are in registers

Memory

Selector is In a special register

Process 1 (Is)

Process 2 (lIs)

basep,

basep,

X + basep,

X + basep,




Segment registers

* Hold 16 bit segment selectors
Indexes into GDT

* Segments are associated with one of three
types of storage

Code
Data
Stack



Programing with segements (not real):

static int x = 1; ds:x =1; // data
inty; // stack ss:y; // stack
if (x) { if (ds:x) {

y =1; ssiy =1;

printf (“Boo”); cs:printf(ds:“Boo”);
} else } else

y=0; ss:y =0;



Programming model

 Segments for: code, data, stack, “extra”
« A program can have up to 6 segments
« Segments identified by registers: cs, ds, ss, es, fs, gs

* Prefix all memory accesses with desired segment:
* mov eax, ds:0x80 (load offset O0x80 from data into eax)
 jmpcs:0xab8  (Jump execution to code offset Oxab8)
* mov ss:0x40, ecx (move ecx to stack offset 0x40)



Programming model, cont.

This Is cumbersome
Instead the idea Is: infer code, data and stack
segments from the instruction type

Control-flow instructions use code segment (jJump, call)
Stack management (push/pop) uses stack

Most loads/stores use data segment

Extra segments (es, fs, gs) must be used
explicitly



Segmentation: what did we achieve

lllusion of a private address space

ldentical copy of an address space in multiple
programs

 We can implement fork()

|solation

Processes cannot access memory outside of their
segments



Segmentation works for isolation, I.e., it does
provide programs with illusion of private memory



Segmentation is ok... but

Process 2 (lIs)
Process 1 (Is)

basep, basep,

X + basep, X + basep,
Memory




Memory

What If process needs more

Process 1 (lIs)

memory”?

malloc() =

basep,

Process 2 (lIs)

X + basep,

X+ base;:z




Memory

What If process needs more

Process 1 (lIs)

memory”?

malloc() =

basep,

Process 2 (lIs)

X + basep,

X+ base;:z




Memory

You can move P2 In memory

Process 1 (Is)

Process 2 (Is)

malloc() =

basep1

basep,

X + basep,

X + basep,

move P2
(copy it's memory)

.

X + basep,




Memory

Or even swap It out to disk

Process 1 (Is)

malloc() =

hESEpl

Process 2 (Is)

basep,

:

X + basep,

X + basep,

Or even swap it out (

(move to disk)

—




Problems with segments

* Segments are somewhat inconvenient
* Relocating or swapping the entire process takes
time
 Memory gets fragmented

* There might be no space (gap) for the swapped out
process to come In

* Will have to swap out other processes



Paging



Memory

Process 1 (Is)

Pages

Process 2 (lIs)




Pages

Process 2 (Is)

Process 1 (Is)

Page table
Level 1 Level 2

Memory




Paging idea

Break up memory into 4096-byte chunks called
pages
* Modern hardware supports 2MB, 4MB, and 1GB pages

* Independently control mapping for each page of linear
address space

Compared with segmentation (single base + limit)

* Much more flexibility



How can we build this translation
mechanism?



Paging: naive approach: translation array

0x410010 = [00 0000 0001]00 0001 0000[0000 0001 0000]
S .

o page number = 1040 or 0x410 1M (1,048,575)
page number or (Ob 100 0001 0000)
Virtual Address Space
(aka Virtual Memory)
01 2
012345678 9101112 1040 1,048,575
V2P translationarray [T TTTTT ] .. [ITTT]

}

012345678 9101112

Physical
Memory =3

Physical page #12 or Oxc

 Linear address 0x410010

 Remember it’'s result of logical to linear translation (aka
segmentation)

 0x410010 = 0x300010 (offset) + 0x110000 (base)



Paging: naive approach: translation array

0x410010 = [00 0000 0001]00 0001 00000000 0001 0000
M

i —
~ page number = 1040 or 0x410 1M (1.048.575
page number or (Ob 100 0001 0000) (1,048,575)
Virtual Address Space
(aka Virtual Memory)
012
012345678 9101112 1040 1,048,575
V2P translation array HEEEEEEEEE |/~—//D:’:|j
01 2/3 4 9101112
Physical
Memory
r 9
CR3 = 0x2 Physical page #12 or Oxc

 Linear address 0x410010

« Remember it's result of logical to linear translation (aka
segmentation)

 0x410010 = 0x300010 (offset) + 0x110000 (base)



What Is wrong?



What Is wrong?

We need 4 bytes to relocate each page
20 bits for physical page number
12 bits of access flags

Therefore, we need array of 4 bytes x 1M
entries

* 4MBs



Paging: naive approach: translation array

0x410010 = [00 0000 0001[00 0001 0000/0000 0001 0000
s o S page number = 1040 or 0x410 1M (1,048,575)
page number or (Ob 100 0001 0000)

!

012345678 9101112 1040 1,048,575

V2P translation array TTTTTTTTTTTT =1

01 345678 9101112 1025

Physical
Memory

A

- Each entry is 4 bytes

-- 20 bits to represent page number + access control bits
- 1 page can contain 1024 entries
- We need 1024 pages to represent all

possible 1M translations

Virtual Address Space
(aka Virtual Memory)

CR3 = 0x2




Paging: array with size

0x410010 = [00 0000 {!Dﬂﬂﬂﬂ 0001 ﬂﬂﬂ@ﬂﬂﬂ 0001 0000
- J
s

bage number page number = 1040 or 0x410 1M (1,048,575)

or (Ob 100 0001 0000)

‘ 012345678 9101112 1040 1204?

V2P translation array (size [ [ T T T T T T T 1T |y[jjj
01273 4 S/ﬁM’Qﬁl{z/ 1025

Physical
Memory

CR3 = 0x2

Virtual Address Space
(aka Virtual Memory)

« The size controls how many entries are required



But still what may go wrong?



Paging: array with size

500,000

01 2

V2P translation array [size [ [T TTTTTTTTTTCTTTTTITTITTITTTIITTITITITITOTTITTITTICNT]




Paging: array with size

500,000

01 2

V2P translation array [size [ TTTTTTTTITT I ITTTTTITTITITTTTTTTITTIITITITTTITTITTICT




Can we improve?

GGGGGGG

01 2
[size [ TTTTTTTTITT I ITTTTTITTITITTTTTTTITTIITITITTTITTITTICT




Paging: array of arrays

0x410010 = [00 0000 0001[00 0001 00000000 0001 0000

}

Table of array regions

500,000

01 2
L

LT T (LT T T T T (T T O

V2P translation array




Paging: array of arrays

V2P translation array

Physical memory

01234

7

8

11

500,000

OxF




Paging: page table

0x410010 = |.'|'. 0000 000100 0001 Q0000000 0001 0000

Page Table

Directory |9
(aka Level 1) _

.

e

Page Table Entry Page Table Entry Page Table Entry
0112 (aka Level 2) + (aka Level 2) | (aka Level 2)

0 7 8/ 91011 an//

V2P translation array

Physical memory

CR3 = 0x2




mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =10
EBX = 20 983 809

20 983 809 =|00 0000 C

page number 1M (1,048,575)

Virtual Address
Space (or Memory)
of the Process

page number = 5123
or (Ob1l 0100 0000 0011)

0123456728 9101112

Physical
Memory




mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =10
EBX = 20 983 809

20 983 809 =|00 0000 0101/00 0000 0011|0000 0000 0001 |

page number

1M (1,048,575)

Virtual Address
Space (or Memory)
of the Process

page number = 5123
CR3 =0 j or (Ob1l 0100 0000 0011)

0123456728 9101112

Physical
Memory




mov (%EBX), EAX # mov value from the location pointed by EBX into EAX

EAX =0
EBX = 20 983 809

20 933 800 {[30 0000 0101]0:0000 091050 3050 0001
A ~r A

page number

1M (1,048,575)

Virtual Address
Space (or Memory)
of the Process

0 12 page number = 5123
CR3 =0 j or (Ob1l 0100 0000 0011)
012345678 9101112
Physical
Memory
'y
32 (4 bytes)
0
1
2
3
4
5
6
1023
Level 1
(Page Table

Directory)



mov (%EBX), EAX # mov value from the location pointed by EBX into EAX

EAX =0
EBX = 20 983 809

20 933 80 =[0.9000010{[000000 0VT§030 3050 0001]

e v
A

page number

1M (1,048,575)

Virtual Address
Space (or Memory)
of the Process

0 1 2 page number = 5123
CR3=0 or (Ob1 0100 0000 0011)
012 3 45467 8 9101112
Physical
Memory
32 pifs (4 bytes) T
0 0
1 1
2 2
3 3
4 4
5 5
6 6
1023 1023
Level 1 Level 2
(Page Table (Page Table)

Directory)



mov (%EBX), EAX # mov value from the location pointed by EBX into EAX

EAX =0
EBX = 20 983 809

20 933 809 =[0.9000 010190.0000 09T 000 0000 0001 |

e v
A

page number

1M (1,048,575)

Virtual Address
Space (or Memory)
of the Process

0 1 2 page number = 5123
CR3 =0 or (0b1 0100 0000 0011)
012345678 9101112
Physical
Memory
32 pifs (4 bytes) T \
0 0
1 1 4
2 2 8
3 3 12
4 4 16
5 5 20
6 6 24
1023 1023 4092
Level 1 Level 2
(Page Table (Page Table)

Directory)

Page



mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =10

EBX = 20 983 809 ° Result.

20 933 809 =[0.9000 010190.0000 09T 000 0000 0001 |
\ “ Y « EAX =55

page number 1M (1,048,575)

Virtual Address
Space (or Memory)
of the Process

0 12 page number = 5123
CR3 =0 or (Ob1l 0100 0000 0011)
01 23456 78 9101112
Physical
Memory
32 pifs (4 bytes) T \
0 0
1 1 4
2 2 8
3 3 12
4 4 16
5 5 20
6 6 24
1023 1023 4092
Level 1 Level 2 Page
(Page Table (Page Table)

Directory)



mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =10

EBX = 20 983 809 ° Result.

20 933 809 =[0.9000 03p1[00 0000 00T 000 3050 0001
\ “ Y « EAX =55

page number 1M (1,048,575)

Virtual Address
Space (or Memory)
of the Process

0 12 page number = 5123
CR3 =0 or (Ob1l 0100 0000 0011)
012345678 9101112
Physical PollEv.com/antonburtsev
Memory
32 pifs (4 bytes) T \
0 0
1 1 4
2 2 8
3 3 12
4 4 16
5 5 20
6 6 24
1023 1023 4092
Level 1 Level 2 Page
(Page Table (Page Table)

Directory)


https://pollev.com/aburtsev

Page translation

Linear Address
31 22 21 12 1 0

Directory Table Offset

v
/1 12 4-KByte Page

/10  Page Table > Physical Address
Page Directory
—>» PTE e =
20
PDE with PS=0 <>

20

IX

CR3




Page translation

hinear Address

4-KByte Page

Physical Address

31 22 21 12 11 0
Directory Table Offset
A12
10 10  Page Table B
Page Directory
—>» PTE e
20
> PDE with PS=0 <>
20
32
CR3




Page directory entry (PDE)
|31 30 29|EB|2? 26|25/24|23 22||21 20/19|18 1}"15 15114 13I12 11|10 QI 8|76 [5/4|3]2]|1 |D| I

| P PW U|IR PDE:
Address of page table lgnored O|lg|A|C T [/ 11 page
n D S| W table

» 20 bit address of the page table



Page directory entry (PDE)
|31 30 29|EB|2? 26|25/24|23 22||21 20/19|18 1}"15 15114 13I12 11!10 Eil 8|76 [5/4|3]2]|1 |D| I

| P PW U|IR PDE:
Address of page table lgnored O|lg|A|C T [/ 11 page
n D S| W table

» 20 bit address of the page table
« Wait... 20 bit address, but we need 32 bits



Page directory entry (PDE)
|31 30 29|28|2? 26|25/24|23 22||21 20/19|18 1}"15 15114 13I12 11{10 Eil 8|76 [5/4|3]2]|1 !Ul I

| P PW U|IR PDE:
Address of page table lgnored O|lg|A|C T [/ 11 page
n D S| W table

« 20 bit address of the page table
« Wait... 20 bit address, but don’'t we need 32 bits?

 Pages 4KB each, we need 1M to cover 4GB
« Pages start at 4KB (page aligned boundary)



Page translation

Linear Address

31 20 21 TZ 11 0
Directory Table Offset
%
/1 12 4-KByte Page
10 10  Page Table —»| Physical Address
Page Directory
-|- PTE Ve
0
PDE with PS=0 <>

'y

20

32

CR3




Page table entry (PTE)

|31 30 29|EB|2? 26/25(24|23 22|21 20(19(18({17]/16/15/14|13|12 11|10 98|76 (5432 1|U| I

P P lowl VIR PTE:
Address of 4KB page frame lgnored (G| AD|A|CI |/ ]/ 11 4KB
T D S|W page

« 20 bit address of the 4KB page
 Pages 4KB each, we need 1M to cover 4GB



Page translation

Linear Address

4-KByte Page

Physical Address

31 20 21 TZ 11 0
Directory Table Offset
A12
/10 10  Page Table —+
Page Directory
—>» PTE e
20
> PDE with PS=0 <>
- 20
&>
CR3




Benefits of page tables

.. Compared to arrays?
« Page tables represent sparse address space more
efficiently
* An entire array has to be allocated upfront
« But if the address space uses a handful of pages

« Only page tables (Level 1 and 2 need to be allocated to
describe translation)

* On a dense address space this benefit goes away
* [I'll assign a homework!



What about isolation?

Save/restore

Two programs,
one memory?

Each process has
Its own page table

OS switches
between them



User memory (2GB) Kernel memory (2GB)

m
O
A N
o f \1s ]
Virtual
of Process 1
Process 1 1 et 2
Page Table pFEE—=
Process 1
o
Virtual
of Process 2
Prucess > e Level2

N . Page Table

L"- asm
. . Process 2 EESCEETE

Ununsed

Physical
ysica EVE

:
’
&
v
’
-
==
- r
’
¥
- -"'r
- r r
! L
¥ ¥
’ ’
’ ’
& I
# ¥
L ¢
¥ #
& ¥
# ¥
s ¢
¥ &
’
#
‘ ’,’
! ;
! .r
’ #
4 ’
J )
U ]
#
:
’ £
# ¥
# -,
#
# I
# ¥
# i
# ¥
#
#
¥ +
¢ ¥
¢ ]
i
i
L
i
’
i
.
Es
;

P1 and P2 can't access each
other memory

0xe000000
(PHYSTOP)
234MB
Top of physical
memory



Compared to segments pages allow

 Emulate large virtual address space on a
smaller physical memory

* In our example we had only 12 physical pages

* But the program can access all 1M pages in Its
4GB address space

 The OS will move other pages to disk



Compared to segments pages allow

« Share a region of memory across multiple programs
« Communication (shared buffer of messages)

e Shared libraries

« Well... segmentation can do this too, but paging is a bit more flexible

Process 2 (Is)

Process 1 (Is)

Page table
Level 1 Level 2

Memory

Shared code
(Is)



Recap: complete address

CPU

lector
Selecto >

translation

Offset

Logical
Address

Segment

Linear

Address >

»| Translation

Page
Translation

x GB

Physical

Address >

) —

RAM



Logical Address
(or Far Pointer)

Y

Segment Y

Selector

Offset

Linear Address

Base Address

Table (GDT)

Segment

Segment

Descriptor [

Global Descriptor

Space

Segment

Linear Address

Fage Directory

o

.

A

Segmentation

Physical
Address
Space

- o—_— — —_ — — ]

—— Page

- —_——— — —

Dir Table Offset
Page Table
’,_,.. Entry
Entry .
Paging




Logical Address
(or Far Pointer)

Segment ¢
Selector Offset

Base Address

Table (GDT)

Segment

Segment

Descriptor [

Global Descriptor

Linear Address

Space

Segment

Linear Address

Fage Directory

o

.

A

Segmentation

Physical
Address
Space

- o—_— — —_ — — ]

—— Page

- —_——— — —

Dir Table Offset
Page Table
’,_,.. Entry
Entry .
Paging




Logical Address
(or Far Pointer)

Segment ¢
Selector Offset

Linear Address

Linear Address

Fage Directory

| | | Space
Global Descriptor
Table (GDT)
Segment
Segment
Descriptor [
> — ||| -
_r Lin. Addr
- A
Segment ﬂ \

Base Address

Segmentation

Physical
Address
Space

- o—_— — —_ — — ]

—— Page

- —_——— — —

Dir Table Offset
Page Table
’,_,.. Entry
Entry .
Paging




Logical Address
(or Far Pointer)

Segment ¢
Selector Offset

Base Address

Linear Address

Space

Global Descriptor

Table (GDT)

Segment

Segment

Segment

Descriptor [

Linear Address

— | Dir

Table

Offset

Fage Directory

Segmentation

Entry

Page Table

Physical
Address
Space

- o—_— — —_ — — ]

Entry

—— Page

- —_——— — —

Paging




Logical Address
(or Far Pointer)

Segment ¢
Selector

Offset

Linear Address

Table (GDT)

Segment

Base Address

Segment

Descriptor [

Global Descriptor

Space

Segment

Linear Address

o

.

A

Segmentation

Physical
Address
Space

- o—_— — —_ — — ]

—— Page

- —_——— — —

Dir Table Offset
Page Table
Fage Directory
’,_,.. Entry
Entry .
Paging




Logical Address
(or Far Pointer)

Lt ¥
Segment

Selector Offset

Linear Address

| Space

Table (GDT)

Segment

Segment
Base Address

Descriptor [

Global Descriptor

Segment

Linear Address

Physical
Address
Space

o

| Segmentation

AT

_r Lin. Addr.
oA

- o—_— — —_ — — ]

- —_——— — —

—| Dir | Table Offset
Page Table
Fage Directory
’,_,.. Entry
- Entry .
—— Page
| Paging




Logical Address
(or Far Pointer)

Segment ¢
Selector

Offset

Linear Address

Table (GDT)

Segment

Base Address

Segment

Descriptor [

Global Descriptor

Space

Segment

Linear Address

Fage Directory

o

.

A

Segmentation

Physical
Address
Space

- o—_— — —_ — — ]

—— Page

- —_— —_— —_— —_— —

Dir Table Offset
Page Table
’,_,.. Entry
Entry .
Paging




Logical Address
(or Far Pointer)

Segment ¢
Selector

Offset

Linear Address

| | Space
i Linear Address
Global Descriptor - )
Table (GDT) —| Dir | Table Offset E\E};rlac?sl
Space
Segment 5 ot
Segment age fable Page
Descriptormm | | || | | || """
_______ Page Directory Phy. Addr
_r Lin. Addr
’,_,.. Entry ——F—-—-——-——-
> * B Entry -
Segment ﬂ \
Base Address \\
T Page
Segmentation | Paging




32Dbit x86 supports two page sizes

 4KB pages
 4MB pages



Page translation for 4MB pages

0x410010 = [00 0000 000100 0001 0000[D000 0001 0000 |

L 0x0

Page Table
Directory 0x2

(aka Level 1) \ /

Physical memory

4MB

CR3 = 0x8192 | ———




Page translation for 4AMB pages

Linear Address
31 22 21 0

Directory Offset

/
/1 22 4-MByte Page

, .
10 _Page Directory —»| Physical Address

— | PDE with PS=1 1/8/ >

CR3




Page translation in 64bit mode

Linear Address

47

39 38

30 29 21 20 12 11
PML4 Directory Ptr Directory Table Offset
| ,
. /19 (|
/g /19 12 4-KB}"tE F’age
L Physical Addr
PTE
Page-Directory- = PDE with PS=0 ,f’" > 40
Pointer Table 40 Page Table

_»|PDPTE
A9
-
A 40
—»| PML4E

CR3

Page-Directory
40

are 48 bits

Virtual addresses

* Physical addresses
are 52 bits



What pages are used for

* Protect parts of the program
* E.g., map code as read-only

* Disable code modification attacks

« Remember R/W bit in PTD/PTE entries!
* E.g., map stack as non-executable

* Protects from stack smashing attacks

* Non-executable bit



Page translation

hinear Address

4-KByte Page

Physical Address

31 22 21 12 11 0
Directory Table Offset
A12
10 10  Page Table B
Page Directory
—>» PTE e
20
> PDE with PS=0 <>
20
32
CR3




Page directory entry (PDE)
|31 30 29|EB|2? 26 25|24 23 22!21'20 19 1B|1?I1E 15|14|13I12 11|1D BI 8 | 7/6|5|4 | 31211 |U| I

| Plo JUlR
olalalcPW /|71 page

Address of page table lgnored T
n D S|W table

« 20 bit address of the page table

PollEv.com/antonburtsev


https://pollev.com/aburtsev

Page directory entry (PDE)
|31 30 29|EB|2? 26|25/24|23 22||21 20/19|18 1}"15 15114 13I12 11!10 Eil 8|76 [5/4|3]2]|1 |D| I

| P PW U|IR PDE:
Address of page table lgnored O|lg|A|C T [/ 11 page
n D S| W table

» 20 bit address of the page table
« Wait... 20 bit address, but we need 32 bits



Page directory entry (PDE)
|31 30 29|28 27126|25|24|23 22||21 20/19|18 1}"15 15114 13I12 11{10 Eil 8|76 [5/4|3]2]|1 Dl I

| P PW U|IR PDE:
Address of page table lgnored O|lg|A|C T [/ 11 page
n D S| W table

» 20 bit address of the page table
« Wait... 20 bit address, but we need 32 bits

« Pages 4KB each, we need 1M to cover 4GB
» Pages start at 4KB (page aligned boundary)



Page directory entry (PDE)
|31 30 29|EB|2? 26|25/24|23 22||21 20/19|18 1}"15 15114 13I12 11|10 Eil 8|76 [5/4|3]2]|1 |D| I

| P PW U|IR PDE:
Address of page table lgnored O|lg|A|C T [/ 11 page
n D S| W table

 Bit #1: R/W — writes allowed?
 But allowed where?



Page directory entry (PDE)

PDE:

41 page
table

(e
Juo =
=
O™
2
-
s~
—

Address of page table lgnored

Bit #1: R/W — writes allowed?
But allowed where?

One page directory entry controls 1024 Level 2
page tables

« Each Level 2 maps 4KB page
So it's a region of 4KB x 1024 = 4MB




Page directory entry (PDE)
|31 30 29|28|2? 26|25/24|23 22||21 20/19|18 1}"15 15114 13I12 11{10 Eil 8|76 [5/4|3]2]|1 !Ul I

| P PW U|IR PDE:
Address of page table lgnored O|lg|A|C T [/ 11 page
n D S| W table

* Bit #2: U/S — user/supervisor
 |[f 0 — user-mode access Is not allowed

» Allows protecting kernel memory from user-
level applications



More paging tricks

» Determine a working set of a program?



LA 22« ¥

——

Linear Address

31 2p

Z1 TZ |1

— Page translation

02 v~ qu ke =

Directo

Table | |

Offset

= \
L
i —

_!t—ﬁ"_'_'_.l-._._

Page Directory

.

—»{

/
/ y/ 4-KByte Page

> —_
 Physical Address
\v

L

/ PDE with PS=0x

%.ﬁ,:ﬂ

N




Page table entry (PTE)
|31 30 29|EB|2? 26|25/24|23 22|21 20119[18|17]16[15|14]13|12 11!1-3 9/8|7|6|5[/4]3|2]|1 |U| I

P P lowl VIR PTE:
Address of 4KB page frame lgnored (G| AD|A|CI |/ ]/ 11 4KB
T D S|W page

« 20 bit address of the 4KB page
 Pages 4KB each, we need 1M to cover 4GB

« Bit #1: R/W — writes allowed?

* To a 4KB page

* Bit #2: U/S — user/supervisor

* |f O user-mode access Is not allowed
* Bit #5: A — accessed



More paging tricks

» Determine a working set of a program?

e Use “accessed” bit

* Determine a set of pages that were updated

* This is useful for virtual machine migration
« Use “dirty” bit



Page table entry (PTE)

|31 3029|28|2?2525242322|21 20(19({18({17[{16)15/14|13|12|11|10/9 (8|7 |6 |54 |3 |2 1IU| I

P P lowl VIR PTE:
Address of 4KB page frame lgnored (G| AD|A|CI |/ ]/ 11 4KB

T D S|W page

« 20 bit address of the 4KB page

« Pages 4KB each, we need 1M to cover 4GB

« Bit #1: R/W — writes allowed?

 To a4KB page

e Bit #2: U/S — user/supervisor

« |f 0 user-mode access is not allowed

« Bit#5: A— accessed

« Bit #6: D — dirty — software has written to this page



More paging tricks

» Copy-on-write memory, e.g. lightweight fork()?



Page table entry (PTE)

|31 30 29|EB|2? 26/25(24|23 22|21 20(19(18({17]/16/15/14|13|12 11|10 98|76 (5432 1|U| I

P P lowl VIR PTE:
Address of 4KB page frame lgnored (G| AD|A|CI |/ ]/ 11 4KB
T D S|W page

 Map page as read only (bit #1)

» Keep track of that memory has to be copied on
write there



Performance



Walking page table can be costly

Linear Address

47 39 38 30 29 2120 12 11 0
PML4 Directory Ptr Directory Table Offset
| 4 v
p /19
/ 9 /19 12 4-KB}"tE F’age
L Physical Addr
PTE
Page-Directory- ~—| PDE with PS=0 ,f"’ 40
Pointer Table 40 Page Table
} Page-Directory
_»{PDPTE 40
, .
Ao -  Address translation
K40 with 4-level page
| PML4E table in 64bit mode

>
fo
CR3




Translation lookaside buffer (TLB)

* CPU caches results of page table walks
L/

Virt Phys

2*62f023100 <:bx1000:>
0% 1000 0x1£000

=l 0x60002000 0xc1000

—_— _ _




TLB nvalidation

After every page table update, OS needs to
manually invalidate cached values

Flush TLB
« Either one specific entry
 Orentire TLB, e.g., when CR3 reqgister Is loaded

* This happens when OS switches from one process
to another

This Is expensive
* Refilling the TLB with new values takes time



Tagged TLBs

 Modern CPUs have “tagged TLBs",

 Each TLB entry has a "tag” — identifier of a process
* NoO need to flush TLBs on context switch

* On Intel this mechanism is called
* Process-Context Identifiers (PCIDs)

Virt Phys Tag
0x£f0231000 0x1000 | P1
0x00b31000 Ox1£000 | P2

Oxb0002000 0xcl000 | P1




When would you disable paging?

200

J
2572 ULy

e — e



When would you disable paging?

* Imagine you're running a memcached

« Keyl/value cache

* You serve 1024 byte values (typical) on 10Gbps
connection

« 1024 byte packets can arrive every 835ns, or 1670
cycles (2GHz machine)

* This Is your target budget per packet



When would you disable paging?

Now, to cover 32GB RAM with 4K pages

* You need 64MB space
* 64bit architecture, 4-level page tables (or 5-levels now)

Page tables do not fit in L3 cache
Modern servers come with 32MB cache

Every cache miss results in up to 4 cache misses
due to page walk (remember 4-level page tables)

Each cache miss is 250 cycles

Solution: 1GB pages



Back of the envelope

If a page Is 4K and an entry is 4 bytes, how many entries
per page?



Back of the envelope

If a page Is 4K and an entry is 4 bytes, how many entries
per page?

1k



Back of the envelope

If a page Is 4K and an entry is 4 bytes, how many entries
per page?

1k

.How large of an address space can 1 page represent?



Back of the envelope

If a page Is 4K and an entry is 4 bytes, how many entries
per page?

1K

.How large of an address space can 1 page represent?

.1k entries * 1page/entry * 4K/page = 4MB



Back of the envelope

If a page Is 4K and an entry is 4 bytes, how many entries
per page?

1K

.How large of an address space can 1 page represent?

|_
.1k entries * 1page/entry * 4K/page = 4MB
|_

.How large can we get with a second level of translation?



Back of the envelope

If a page is 4K and an entry is 4 bytes, how many entries
per page?

1K
.How large of an address space can 1 page represent?
.1k entries * 1page/entry * 4K/page = 4MB

.How large can we get with a second level of translation?
1k tables/dir * 1k entries/table * 4k/page = 4 GB

.Nice that it works out that way!




Segment descriptors

31 242322212019 161514 13 12 11 8 7 0
D| [A| Seg. D
Base 31:24 G|/|L|[v| Limit |P| P |S Type Base 23:16 4
B L 19:16 L
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software

BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

DPL — Descriptor privilege level

G — Granularity

LIMIT — Segment Limit

P — Segment present

S — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type



Page translation

Linear Address
31 22 21 12 1 0

Directory Table Offset

v
/1 12 4-KByte Page

/10  Page Table > Physical Address
Page Directory
—>» PTE e =
20
PDE with PS=0 <>

20

IX

CR3




Page translation

Linear Address

10

'y

Page Directory

31 22 21 14 11 0
Directory Table Offset
A12
10  Page Table -

4-KByte Page

Physical Address

PTE

—
PDE with PS=0 —<>

20

32

CR3




Questions?
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