
RedLeaf: Towards An Operating System for Safe and
Verified Firmware

Vikram Narayanan
University of California, Irvine

Marek S. Baranowski
University of Utah

Leonid Ryzhyk
VMware Research

Zvonimir Rakamarić
University of Utah

Anton Burtsev
University of California, Irvine

Abstract
RedLeaf is a new operating system being developed from
scratch to utilize formal verification for implementing prov-
ably secure firmware. RedLeaf is developed in a safe language,
Rust, and relies on automated reasoning using satisfiabil-
ity modulo theories (SMT) solvers for formal verification.
RedLeaf builds on two premises: (1) Rust’s linear type sys-
tem enables practical language safety even for systems with
tightest performance and resource budgets (e.g., firmware),
and (2) a combination of SMT-based reasoning and pointer
discipline enforced by linear types provides a unique way
to automate and simplify verification effort scaling it to the
size of a small OS kernel.
ACM Reference Format:
Vikram Narayanan, Marek S. Baranowski, Leonid Ryzhyk, Zvon-
imir Rakamarić, and Anton Burtsev. 2019. RedLeaf: Towards An
Operating System for Safe and Verified Firmware. In Workshop
on Hot Topics in Operating Systems (HotOS ’19), May 13–15, 2019,
Bertinoro, Italy. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3317550.3321449

1 Introduction
Every modern off-the-shelf system (desktop and server) exe-
cutes several layers of firmware underneath the most privi-
leged layer of software be it an operating system (OS) or a
hypervisor. On an Intel platform, firmware subsystems such
as System Management Mode (SMM), Management Engine
(ME) [28], Innovation Engine (IE) [27], Baseboard Manage-
ment Controller (BMC) [43], power-management controllers
(P-Unit [29] and PMC [59]), and likely many others, leverage
hardware memory isolation and dedicated microcontrollers
to run in isolation from the systems software. For exam-
ple, anecdotal evidence suggests that at least four different
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotOS ’19, May 13–15, 2019, Bertinoro, Italy
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6727-1/19/05. . . $15.00
https://doi.org/10.1145/3317550.3321449

firmware subsystems are running on the Intel Silvermont
Moorefield system-on-chip along with regular cores [58].
Some firmware subsystems have complete control over the
hardware platform. For example, SMM, IE, and ME have un-
restricted access to the entire memory of the system. BMC,
ME, and IE provide physical-like access to the system over
the network, i.e., have the capability to power cycle the ma-
chine, boot from a network drive, install system software,
intercept keyboard, mouse, and video I/O, and perform di-
rect memory access (DMA) transactions. Moreover, some
firmware subsystems [27, 28] are enabled and continue exe-
cution as long as the power is connected to the machine, i.e.,
even if the rest of the system is powered down.

Being the most privileged part of the system, the platform
firmware becomes a primary target for security attacks. A
single SMM, IE, ME, or BMC vulnerability gives an attacker
full control over the machine. Furthermore, the attack is
virtually undetectable with existing anti-virus and forensics
tools.
To make things worse, modern firmware is fundamen-

tally insecure. The software engineering technology behind
the platform firmware has remained unchanged for decades.
Modern firmware is developed in a combination of low-level
assembly and an unsafe programming language, namely C.
(Several rare exceptions demonstrate applications of fuzzing
and symbolic execution [24, 40].) Typical firmware both ad-
heres to multiple low-level hardware specifications and im-
plements functionality of a minimal OS, i.e., implements mul-
tiple device drivers and sometimes even provides support for
file systems and network protocols [27, 28, 43]. Due to such
inherent complexity, bugs and vulnerabilities are routinely
introduced in the omni-privileged firmware code. Multiple
attacks on platform firmware were demonstrated in recent
years [25, 39, 50, 51, 72–75], and Intel disclosed 20 firmware
vulnerabilities overall in 2018 [1–20]. Likely, this is just a tip
of an iceberg. We anticipate that similar to modern operating
systems that face hundreds of vulnerabilities a year, modern
firmware as it exists today will likely go through a cycle of
aggressive vulnerability discovery and exploitation in the
next several years. Furthermore, it is unlikely that existing
security mechanisms will be able to ensure the security of
firmware subsystems.

https://doi.org/10.1145/3317550.3321449
https://doi.org/10.1145/3317550.3321449
https://doi.org/10.1145/3317550.3321449

HotOS ’19, May 13–15, 2019, Bertinoro, Italy Narayanan, Baranowski, Ryzhyk, Rakamarić, Burtsev

We argue that ensuring the security and correctness of
firmware requires a clean-slate approach. Modern attacks
utilize automated bug finding tools for discovery of vulnera-
bilities. A promising approach to win the arms race against
such attacks is to utilize a rigorous approach to program
correctness.
RedLeaf is a new operating system aimed at leveraging

a safe, linear-typed programming language, Rust, for devel-
oping safe and provably secure firmware. RedLeaf aims at
creating an efficient execution environment that is verifi-
ably end-to-end secure, meaning that: (1) verification cov-
ers all code that executes on the machine from the ker-
nel and platform-specific device drivers to applications that
implement firmware-specific functionality, (2) it is feasible
to demonstrate equivalence to a high-level specification—
implementation of the system is indistinguishable from the
high-level abstract state machine, and (3) the verified code
remains fast.
RedLeaf builds on two premises: (1) Rust’s linear type

system enables practical language safety even for systems
with the tightest performance and resource budgets, e.g.,
firmware, (2) a combination of SMT-based reasoning and
pointer discipline enforced by linear types provides a way to
automate and simplify verification effort and scale it to the
size of a small operating system kernel that can run firmware
subsystems. RedLeaf provides a Floyd-Hoare-style [42, 47]
modular verification (i.e., based on pre-conditions, post-con-
ditions, and loop invariants) for low-level systems that are
designed to be fast and small. It achieves that by developing
a new verification toolchain built on the SMACK verifier [36,
69], Boogie intermediate verification language [31, 54], and
Z3 SMT solver [30].

In the past, IronClad [46] achievedwhole stack verification
of non-trivial systems, but the systems incurred 100–189x
slowdown. We target the same level of guarantees of whole-
stack verification, but with the performance of our system
remaining close to the unverified unmanaged code. Specifi-
cally, our verified code will compile into low-level machine
code, require no runtime, and avoid garbage collection.

We argue that unique properties of Rust’s linear type sys-
tem, and specifically its ability to lift the burden of resolving
memory aliasing from the verifier, open a new page in the do-
main of practical and scalable verification. While RedLeaf is
an early work in progress, we believe that our methodology
and approach can be useful to enable new directions in the
development of the next generation of secure and reliable
systems.

2 Overview of RedLeaf
RedLeaf is a minimal operating system aimed at implement-
ing firmware subsystems. Today, a broad range of firmware
requires functionality of an operating system with support
for running concurrent activities (i.e., threads of execution),

interrupt handling, scheduling, memory management, and
even process isolation and inter-process communication. For
example, recent analysis of the Intel ME [28] revealed that
it runs a small, possibly, Minix-based microkernel that pro-
vides support for conventional process isolation and all tra-
ditional primitives of a microkernel operating system [71].
Trusty [32] and Little Kernel [37] are minimal kernels used
for implementing firmware of a Trusted Execution Envi-
ronment (TEE) on Android devices. Firmware subsystems
of Baseboard Management Controller (BMC) [43], numer-
ous network switches, and recent BIOS implementations
rely on the full Linux operating system as their firmware
OS [34, 41, 63, 65].

Furthermore, there is a growing trend motivated by both
security concerns [32, 41, 60] and economics of open hard-
ware and software development to open up traditionally
closed firmware subsystems. EDK II is an open source im-
plementation of the UEFI firmware from Intel [49]. Linux-
Boot [34] and OpenBMC [41] are open-sourced versions of
BIOS and BMC controller firmware subsystems. Started as
part of the Open Compute Project [68], todaymultiple switch
vendors support open bare metal switches, i.e., switches that
allow execution of a third-party operating system like Linux
on the switch itself [62]. Switch vendors develop the switch
hardware, and provide libraries for programming it, but leave
the software stack that controls the hardware open. Multiple
Linux-based switch operating systems are available [63, 65].

RedLeaf Architecture We develop RedLeaf as a minimal
operating system aimed at the needs of a diverse family of
firmware subsystems. RedLeaf is designed to run as a small
core kernel and a collection of language-enforced protec-
tion domains [21, 48, 66] that implement kernel subsystems
and specific firmware logic. Isolated kernel subsystems do
not share data in RedLeaf. Instead, they rely on the linear
type system to implement lightweight zero-copy communica-
tion [21]. Whenever an object is passed from one domain to
another, e.g., via a function call, the sender loses ownership
of the object—the compiler enforces that it cannot reference
the object in the future. This allows us to modularize the
verification effort, since verifying a Rust function in general
does not require reasoning or maintaining complex shape
invariants about the objects on the heap not owned by it.

Rust and Linear Types RedLeaf builds on the premise that
linear types are critical for creating a scalable automated ver-
ification infrastructure. In particular, Rust enforces (using its
type system) a rigorous discipline for controlling of sharing
and aliasing in the program heap. In a software verifier for a
traditional procedural language, developers are required to
provide complex program heap non-aliasing and partition
invariants by writing cumbersome quantified annotations.
Such annotations are complicated to come up with and write,
as well as to reason about using SMT solvers. Rust’s linear
type system and ownership model “forces” developers to

RedLeaf: Towards An Operating System for Safe and Verified Firmware HotOS ’19, May 13–15, 2019, Bertinoro, Italy

carefully think about and essentially explicitly specify their
program heap sharing/non-aliasing properties early on in
the development process. Our verification toolchain lever-
ages this information to (1) remove the burden of specify-
ing a large class of program heap invariants from the user
and (2) scale up the verification by performing an efficient
quantifier- and array-free encoding of the program heap (see
section 3).
In contrast to previous efforts aimed at developing scal-

able automated verification in a verification-friendly lan-
guage [45, 46], Rust allows RedLeaf to remain fast. Histor-
ically, to implement safety, programming languages rely
on managed runtime, and specifically garbage collection.
Despite many advances in garbage collection, its overhead
remains prohibitive for systems with tight time and space
budgets. Rust, however, implements safety without garbage
collection, and instead relies on a restricted ownership model
enforced by its linear type system—there exists a unique
reference to each live object in memory. Single ownership al-
lows static tracking of the object lifetime and its deallocation
without a garbage collector.

Related Work In the domain of operating systems, several
verified kernels have been tried in the past. Unfortunately,
with no or minimal automation of proofs the cost of verifying
OS code is prohibitively high. It took over 20 person-years
to develop the first verified microkernel, seL4 [53], which is
only 10,000 lines of code. Concentrating on multicore sup-
port, CertiKOS [44] and later Xu et al.’s [76] framework for
reasoning about interrupts in the µC/OS-II kernel rely on
the Coq interactive theorem prover [33] to construct proofs,
yet, still taking 2 and 5.5 person-years, respectively. Both
seL4 and CertiKOS verify only the core kernel and leave de-
vice drivers unverified. Hyperkernel introduces push button
verification, i.e., translates LLVM intermediate representa-
tion (IR) into SMT queries, to achieve significant progress in
automation of OS proofs [61]. Yet, without explicit support
from the programming language that simplifies the specifi-
cation of loop invariants, only the simplest kernel, i.e., the
kernel in which all code paths are finite, is amenable to the
suggested verification approach.

3 Leveraging Rust for Verification
Software verification involves reasoning about program state,
which typically consists of the program counter, valuations
of local and global variables, and program heap that stores
dynamically allocated objects and data structures. When run-
ning on an actual machine the heap is bounded, however,
its size is so large that for the purpose of verification it is
customary to assume it is unbounded. Hence, in theorem-
prover-based software verifiers it is straightforward to model
the program heap using an unbounded array (i.e., map) that
maps addresses into values. In practice, however, having

just one large array has a detrimental impact on scalabil-
ity since current state-of-the-art automatic theorem provers,
namely SMT solvers, struggle in the presence of numerous ar-
ray reads and writes. Hence, various approaches have been
devised to split the program heap into a collection of ar-
rays, thereby having less read/write pressure on each array.
The key idea is to place dynamically allocated objects, or
their parts, that cannot alias into separate arrays. To conser-
vatively establish non-aliasing, these approaches typically
leverage either type information [26] or results of a con-
servative pointer analysis [70]. Still, despite significantly
improving scalability, even such memory-splitting-based ap-
proaches run out of steam when faced with programs with a
lot of aliasing and intricate multi-level linked data structures.

Our main goal is to perform full functional verification of
RedLeaf. Currently, performing such deep and detailed veri-
fication of even a small-sized system can only be achieved
using modular reasoning that relies on the design-by-contract
paradigm. This entails requiring from a developer to man-
ually annotate their programs with procedure contracts in
the form of pre- and post-conditions, and loop invariants. In
an imperative language designed with verification in mind,
such as Dafny [55], the presence of dynamic memory allo-
cation, pointers, side-effects, and unbounded (linked) data
structures entails that the most complex and painful aspect
of writing annotations is describing memory aliasing and
separation constraints.
In Rust, on the other hand, either alias-freedom or im-

mutability comes for free. More specifically, if there is a
mutable reference, then there is no aliasing, but a program
can have any number of immutable references to an object.
We next present several examples that explore to which ex-
tent the non-aliasing and immutability rules baked into Rust
help with both the specification and verification processes.

Frame Example Figure 1 (top) gives a simple example il-
lustrating how uncontrolled side-effects make modular veri-
fication much more complicated and involved. To be able to
modularly verify the assertion in the C code on the left, we
need to provide the verifier with a postcondition on foo()
of the following form:

ensures forall addr:int ::

Mem[addr] == old(Mem[addr])

We assume that the verifier is using array Mem, which maps
addresses into values, to model the program heap/memory.
The old construct denotes that whatever it wraps refers
to the pre-state of the procedure. Such post-conditions are
called frame rules, andwhen performingmodular verification
they are used to frame what part of the global program state
procedure foo() can update. In this simple case, the frame
rule specifies that foo() does not modify any memory/heap
locations. In terms of specifying them, frame rules get really
complicated really fast, for example in the presence of even

HotOS ’19, May 13–15, 2019, Bertinoro, Italy Narayanan, Baranowski, Ryzhyk, Rakamarić, Burtsev

void foo() {...}

void main(void) {

int *x = (int*)malloc(sizeof(int));

*x = 5;

foo(x);

assert(*x == 5);

}

fn foo(x: &i32) {...}

fn main() {

let x: Box<i32> = Box::new(5);

foo(&*x);

assert!(*x == 5);

}

void bar(int *x, int *y) {

*x = 5;

assert(*y == 10);

}

void main(void) {

int *x = (int*)malloc(sizeof(int));

int *y = (int*)malloc(sizeof(int));

*y = 10;

bar(x, y);

}

fn bar(x: &mut i32, y: &i32) {

*x = 5;

assert!(*y == 10);

}

fn main() {

let mut x = Box::new(0);

let y = Box::new(10);

bar(&mut *x, &*y);

}

Figure 1. Simple examples illustrating how uncontrolled side-effects (top) and unrestricted aliasing (bottom) in a language complicate the
verification process. C implementations are on the left, while their Rust counterparts are on the right.

simple unbounded arrays and linked data structures such
as lists. In terms of proving them, they present a major bur-
den for SMT solvers since they always involve quantifiers,
which SMT solvers often struggle with since the quantifier
instantiation approach they implement is very brittle.
If we encode this example in Rust, as shown on the top-

right in Figure 1, x would be passed as an immutable ref-
erence (i.e., x:&i32 versus x:&mut i32), in which case the
listed frame rule could be derived automatically from the
function signature. In fact, if we push this further, the frame
rule (and the quantifier it brings into its SMT encoding)
would not actually be needed, as we know from the function
signature that the function cannot modify x; in particular, it
cannot modify it even via some other alias to the same mem-
ory location. Moreover, when verifying modules written in
a pure subset of Rust, there is no need to model memory
as an array, since the main reason to do so for imperative
languages is the possibility of aliasing. Instead, we can model
the program heap as a collection of typed variables.

Aliasing Example Figure 1 (bottom) gives a simple ex-
ample illustrating how unrestricted aliasing make modular
verification much more complicated and involved. To be able
to modularly verify the assertion in the C code on the left,
we need to provide the verifier with two pre-conditions on
bar(). The first one is obvious: requires *y == 10. How-
ever, the second one has to ensure that pointers x and y do
not alias: requires x != y. Similarly to specifying frame
rules, non-aliasing specifications become really complex re-
ally fast, again for example in the presence of linked data

structures. For instance, if bar() would take two linked lists
as input, we would often need to specify that the lists are
completely disjoint, meaning that no two list elements can
alias. This typically requires the introduction of quantified
list reachability predicates, which are very hard to reason
about.

If we encode this example in Rust, as shown on the bottom-
right in Figure 1, we can drop the second pre-condition
as we know by construction that x and y cannot alias the
same memory location. Also, Rust does not have dynamic
memory allocation akin to malloc. Instead, we would write
x = Box::new(); y = Box::new(), which would introdu-
ce two new variables to the program state. Their location
in memory is irrelevant since they cannot alias each other
or any other variables. Hence, in the SMT encoding of Rust,
we could use scalar variables to capture x and y, instead of
the more expensive memory maps used in the traditional
encodings of imperative languages.

To summarize, it is well-accepted that pointer separation
and non-aliasing is really hard to both specify and reason
about, especially once one starts introducing linked data
structures such as lists and trees. Separation logic helps with
that to some extent, since it enables focusing only on the
parts of the heap that are being touched by a particular
function. Once we ensure that every variable is disjoint from
every other variable (i.e., no two variables can alias), as in
Rust, we do not need any more to use arrays to model the
program heap/memory. In other words, the semantics of
pure Rust can be defined without introducing a heap (typed
or untyped). This enables us to encode many interesting

RedLeaf: Towards An Operating System for Safe and Verified Firmware HotOS ’19, May 13–15, 2019, Bertinoro, Italy

Annotated
Rust

program
rustc MIR SMACK Boogie Z3

Figure 2. Toolflow of the Rust verifier.

verification problems to SMT without arrays or quantifiers,
thereby greatly improving the scalability and performance
of the verifier.
In general, clearly there is no way around having an un-

bounded program heap if we want to model real programs
precisely, such as programs that allocate unbounded vec-
tors or linked data structures. However, this program heap
can be much better structured within a Rust verifier than in
verifiers for conventional languages. For example, instead
of using an untyped array of bytes to represent program
heap, we can leverage typed lists and maps provided by SMT
solvers, which are both unbounded, but are much more effi-
cient. More specifically, the state of a Rust program is a set
of variables, where each variable describes a potentially un-
bounded tree of typed objects. It is a tree because there is no
aliasing and it is potentially unbounded due to the existence
of recursive data structures.

Rust Verifier As a part of RedLeaf’s verification effort, we
work on creating a rigorous (i.e., sound)modular Rust verifier
based on SMT solving. Figure 2 outlines the toolflow of the
verifier. We leverage the mid-level IR (MIR) [64] format as
the starting point for our translation into Boogie [22]. MIR is
a simple core representation of Rust programs that compiles
away many of the complexities of Rust. For example, all of
the Rust control-flow-related keywords, such as loop, break,
and continue, are compiled away into simple goto statements
supported byMIR. Internally, MIR is represented as a control-
flow graph, which also makes it suitable to be the verification
target. Given that MIR contains only a very limited number
of language primitives, building a translator into Boogie is a
modest development effort. At the same time, MIR makes all
types explicit and includes full type information, since it gets
constructed after all the Rust type-checking is already done.
Hence, the encoding of the program heap can be performed
much more efficiently, as we already described. Finally, at
the MIR level, program annotations are easier to parse and
translate into Boogie compared to translating from LLVM-IR.

4 Verification of the Core Kernel
We approach verification of the RedLeaf kernel and applica-
tion domains using modular assume-guarantee Floyd-Hoare-
style reasoning [42, 47]. Specifically, we annotate Rust pro-
grams, in particular functions and loops, with predicates
about program state in the form of pre-conditions, post-
conditions, and loop invariants. Then, the verification pro-
cess can modularly discharge proofs for each function in

#[ensures="(x.len() == old(x).len())

&& (forall i,j in 0..x.len():

i<=j ==> x[i] <= x[j])

&& (forall i in 0..x.len():

exists j in 0..x.len():

x[i] == old(x)[j])"]

fn sort(x: &mut Vec<i32>) {

// ... Code to sort the vector ...

}

Figure 3. Example of a post-condition encoded as a function at-
tribute.

isolation, thereby allowing for the full-functional verifica-
tion process to scale to operating-system-size programs. For
example, the Rust function in Figure 3 is annotated with a
post-condition about the program state, encoded as a func-
tion attribute. The first conjunct ensures that the vector’s
length does not change, the second ensures that the vector
is sorted in the end of the function, and finally the third
ensures that every value in the sorted vector is present in
the unsorted input vector.

If this Rust code is appropriately translated into a Boogie
program [31, 54], the Boogie verifier [23] can automatically
verify that the post-condition holds (for all possible inputs
x) as long as the code to sort the vector is correct. Boogie is
sound, i.e., it will never prove an incorrect program, but it
will often fail to automatically recognize valid programs as
correct. Hence, the majority of the verification effort goes
into developing proper pre-conditions, post-conditions, and
loop invariants inside every subsystem to help Boogie com-
plete the verification.

Specifications We develop a simple language for writing
specifications as an abstract description of the desired system
behavior, e.g., we allow specifying how the state of the kernel
that is modeled as a state machine advances with every
system call. The verification process then ensures that the
system implementation meets this high-level description.
Specifications are a part of the trusted computing base, so it
is important to develop them correctly.

Unsafe Rust Extensions While recent work on imple-
menting an embedded operating system in Rust [38, 56]
develops techniques for minimizing the amount of unsafe
Rust code in the OS kernel, development in a pure safe code
is simply impossible, e.g., all code that accesses raw memory-
mapped machine state, e.g., DMA ring buffers, requires an
unsafe cast [38].

The RustBelt project provides a guide for ensuring that un-
safe code is encapsulated within a safe interface [52]. Specif-
ically, by modeling the semantics of the type system, Rust-
Belt’s rules can be used to determine if an unsafe program

HotOS ’19, May 13–15, 2019, Bertinoro, Italy Narayanan, Baranowski, Ryzhyk, Rakamarić, Burtsev

can have a safe encapsulation. It does so by generating a
code contract specifying what conditions must be true for
the library to be safely accessed. The rules given in Rust-
Belt only cover reasoning about unsafe pointers generated
from within the Rust programming language. In RedLeaf we
extend the rule system to model DMA and other hardware
level pointers. This allows us to produce the appropriate
code contract to ensure safety. Then a verifier can check the
code contract, proving the library is safe.

Memory Allocation Rust programs allocate memory on
the stack and on the heap. Both allocation mechanisms re-
quire extra steps to be safe. The program is “stack safe” if
the stack pointer never points outside of allocated memory
specifically dedicated to the stack. In Rust the violation of
this property is possible through a stack overflow, which
happens when the stack does not have enough space to store
the new stack frame. Currently, Rust implements a dynamic
check that ensures that there is always enough space on the
stack for a function to proceed. In RedLeaf we allocate the
new stack from the verified dynamic memory allocator (heap
allocator).
Heap allocation requires dynamic memory management.

In RedLeaf we adapt one of the existing verified memory
allocators. Specifically, we adapt the memb from Contiki [57],
a popular open-source operating system for IoT. Memb’s
specifications were fully proven automatically using Frama-
C [57].While the existing and verifiedMemb allocator allows
us to get the system running, in the future we plan to inves-
tigate how we can develop and verify a more sophisticated
memory allocator implemented in Rust.

Threads andContext Switching Executing on baremetal,
RedLeaf has to provide support for creating threads of execu-
tion and context switching between them. A minimal thread
is represented by a thread structure that stores run-time state
of the thread (i.e., callee saved registers) and a pointer to
the thread’s stack. To implement support for creating a new
thread we allocate a new thread data structure and stack
using the verified memory allocator.
To switch between threads we implement and verify a

small assembly routine that saves the runtime state of the
process, restores the state of the next process by loading its
runtime state in the CPU registers, and switches the stack be-
tween the old and the new thread. The entire context switch
routine is only 13 machine instructions on 32bit x86. How-
ever, the code for performing a context switch is necessarily
architecture specific, and is written in assembly. In order to
verify the correctness of the context switch code, we need
to model the effects of the machine instructions. We rely
on McSema [35], which translates native machine code into
LLVM bitcode. As the Rust compiler emits LLVM bytecode,
we inline the translated context switch routine directly into
the emitted bytecode.

Interrupts RedLeaf disables interrupts while running in-
side the kernel. Interrupt handlers are inherently unsafe as
they preempt execution of the code asynchronously leaving
memory in a possibly inconsistent state. By disabling the
interrupts, we can reason about the code path through the
kernel atomically (i.e., we rule out interleaved execution, and
allow the verifier to reason about each “system call” from
start to finish and independent from the rest of the system).
As a consequence, RedLeaf disables preemption of a thread
inside the core kernel. The path through the kernel is short,
hence executing it with preemption disabled is actually in
many cases faster than fine-grained locking [67]. Interrupts
are delivered when the kernel returns from the system call.
The interrupt handler again runs atomically.

5 Conclusions
RedLeaf brings together results from the domains of ver-
ification, programming languages, and systems to enable
new methodology for developing verified systems software.
To achieve complete verification of a small operating sys-
tem aimed at the development of firmware subsystems, we
propose a set of new tools, a collection of techniques and en-
gineering principles, and a methodology focused on scalable
development of verified systems.

Acknowledgments
We thank the anonymous HotOS reviewers. This material
is partially based upon work supported by Intel and the
National Science Foundation under grants number 1837127
and 1837051.

References
[1] Intel Security Advisory. 2018. Bluetooth pairing vulnerabil-

ity. https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00128.html.

[2] Intel Security Advisory. 2018. BMC Firmware Vulnerability Intel
Server Boards, Compute Modules and Systems. https://www.intel.com/
content/www/us/en/security-center/advisory/intel-sa-00130.html.

[3] Intel Security Advisory. 2018. DCI Policy Update. https://www.
intel.com/content/www/us/en/security-center/advisory/intel-sa-
00127.html.

[4] Intel Security Advisory. 2018. EDK II Untested memory not covered
by SMM page protection. https://www.intel.com/content/www/us/en/
security-center/advisory/intel-sa-00159.html.

[5] Intel Security Advisory. 2018. Firmware Authentication By-
pass. https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00152.html.

[6] Intel Security Advisory. 2018. Insecure Handling of BIOS and
AMT Passwords. https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00160.html.

[7] Intel Security Advisory. 2018. Intel 2G Firmware Update for Modems
using ETWS. https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00116.html.

[8] Intel Security Advisory. 2018. Intel Active Management Technol-
ogy 9.x/10.x/11.x/12.x Security Review Cumulative Update Advi-
sory. https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00141.html.

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00128.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00128.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00130.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00130.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00127.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00127.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00127.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00159.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00159.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00152.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00152.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00160.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00160.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00116.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00116.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00141.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00141.html

RedLeaf: Towards An Operating System for Safe and Verified Firmware HotOS ’19, May 13–15, 2019, Bertinoro, Italy

[9] Intel Security Advisory. 2018. Intel Baseboard Management Controller
(BMC) firmware Advisory. https://www.intel.com/content/www/us/
en/security-center/advisory/intel-sa-00149.html.

[10] Intel Security Advisory. 2018. Intel Converged Security Management
Engine (Intel CSME) 11.x issue. https://www.intel.com/content/www/
us/en/security-center/advisory/intel-sa-00118.html.

[11] Intel Security Advisory. 2018. Intel CSME Assets Advi-
sory. https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00125.html.

[12] Intel Security Advisory. 2018. Intel NUC BIOS SW SMI Call-
Out. https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00110.html.

[13] Intel Security Advisory. 2018. Intel NUC Firmware Security Ad-
visory. https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00176.html.

[14] Intel Security Advisory. 2018. Intel Platform Trust Technology
(PTT) Update Advisory. https://www.intel.com/content/www/us/en/
security-center/advisory/intel-sa-00142.html.

[15] Intel Security Advisory. 2018. Intel Q118 Intel Active Manage-
ment Technology 9.x/10.x/11.x Security Review Cumulative Up-
date. https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00112.html.

[16] Intel Security Advisory. 2018. Intel Server Board Firmware Advi-
sory. https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00138.html.

[17] Intel Security Advisory. 2018. Intel Server Board TPM Advi-
sory. https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00148.html.

[18] Intel Security Advisory. 2018. Intel Server Boards Firmware Ad-
visory. https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00179.html.

[19] Intel Security Advisory. 2018. Platform firmware included insecure
handling of certain UEFI variables. https://www.intel.com/content/
www/us/en/security-center/advisory/intel-sa-00158.html.

[20] Intel Security Advisory. 2018. PowerManagement Controller (PMC) Se-
curity Advisory. https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00131.html.

[21] Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, Au-
rojit Panda, Zvonimir Rakamarić, and Leonid Ryzhyk. 2017. System
Programming in Rust: Beyond Safety. In Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems (HotOS). 156–161. https:
//doi.org/10.1145/3102980.3103006

[22] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. 2005. Boogie: A Modular Reusable Verifier for
Object-Oriented Programs. In Proceedings of the 4th International Sym-
posium on Formal Methods for Components and Objects (FMCO). 364–
387. https://doi.org/10.1007/11804192_17

[23] Michael Barnett and K. Rustan M. Leino. 2005. Weakest-Precondition
of Unstructured Programs. In Proceedings of the 6th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering (PASTE). 82–87. https://doi.org/10.1145/1108792.1108813

[24] Oleksandr Bazhaniuk, John Loucaides, Lee Rosenbaum, Mark R Tuttle,
and Vincent Zimmer. 2015. Symbolic Execution for BIOS Security. In
Proceedings of the 9th USENIX Conference on Offensive Technologies
(WOOT). 8–8.

[25] Catalin Cimpanu. 2018. New Spectre Attack Recovers Data From
a CPU’s Protected SMM Mode. https://www.bleepingcomputer.
com/news/security/new-spectre-attack-recovers-data-from-a-cpus-
protected-smm-mode/.

[26] Jeremy Condit, Brian Hackett, Shuvendu K. Lahiri, and Shaz Qadeer.
2009. Unifying Type Checking and Property Checking for Low-
level Code. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). 302–314.
https://doi.org/10.1145/1480881.1480921

[27] Intel Corporation. 2016. Intel Forums: What is Intel Innovation En-
gine? https://forums.intel.com/s/question/0D50P000049060MSAQ/
what-is-innovation-engine.

[28] Intel Corporation. 2017. What is Intel Management En-
gine? https://www.intel.com/content/www/us/en/support/articles/
000008927/software/chipset-software.html.

[29] Intel Corporation. 2018. Intel Pentium Silver and Intel Celeron
Processors. https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/silver-celeron-datasheet-vol-1.pdf.

[30] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Proceedings of the 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS).
337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[31] Robert DeLine and K. Rustan M. Leino. 2005. BoogiePL: A Typed
Procedural Language for Checking Object-Oriented Programs. Technical
Report MSR-TR-2005-70. Microsoft Research.

[32] Android Developers. 2018. Trusty TEE. https://source.android.com/
security/trusty.

[33] Coq Developers. 2018. The Coq Proof Assistant. https://coq.inria.fr.
[34] LinuxBoot Developers. 2019. Linux as Firmware. https://linuxboot.org.
[35] McSema Developers. 2018. Framework for Lifting x86, AMD64, and

AArch64 Program Binaries to LLVM Bitcode. https://github.com/
trailofbits/mcsema.

[36] SMACK Developers. 2018. SMACK Software Verifier and Verification
Toolchain. http://smackers.github.io.

[37] The LK Developers. 2019. The LK embedded kernel. https://github.
com/littlekernel/lk.

[38] The Tock OS Developers. 2018. Tock Embedded Operating system.
https://www.tockos.org.

[39] Loïc Duflot, Olivier Levillain, Benjamin Morin, and Olivier Grumelard.
2009. Getting into the SMRAM: SMM Reloaded. https://cansecwest.
com/csw09/csw09-duflot.pdf.

[40] Jakob Engblom. 2017. Finding BIOS Vulnerabilities with Symbolic
Execution and Virtual Platforms. https://software.intel.com/en-us/
blogs/2017/06/06/finding-bios-vulnerabilities-with-excite.

[41] Facebook. 2015. Introducing OpenBMC: an Open Soft-
ware Framework for Next-Generation System Management.
https://code.fb.com/open-source/introducing-openbmc-an-open-
software-framework-for-next-generation-system-management/.

[42] RobertW. Floyd. 1967. AssigningMeanings to Programs. In Proceedings
of Symposia in Applied Mathematics, Vol. 19. 19–32.

[43] Corey Gough, Ian Steiner, andWinston Saunders. 2015. Energy Efficient
Servers: Blueprints for Data Center Optimization. Apress.

[44] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vil-
helm Sjöberg, and David Costanzo. 2016. CertiKOS: An Extensible
Architecture for Building Certified Concurrent OS Kernels. In Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI). 653–669.

[45] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
Proving Practical Distributed Systems Correct. In Proceedings of the
25th Symposium on Operating Systems Principles (SOSP). 1–17. https:
//doi.org/10.1145/2815400.2815428

[46] Chris Hawblitzel, Jon Howell, Jacob R Lorch, Arjun Narayan, Bryan
Parno, Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-to-End
Security via Automated Full-System Verification. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 165–181.

[47] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming.
Commun. ACM 12, 10 (Oct. 1969), 576–580. https://doi.org/10.1145/
363235.363259

[48] Galen C. Hunt and James R. Larus. 2007. Singularity: Rethinking the
Software Stack. SIGOPS Oper. Syst. Rev. 41, 2 (2007), 37–49. https:
//doi.org/10.1145/1243418.1243424

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00149.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00149.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00118.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00118.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00125.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00125.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00110.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00110.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00176.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00176.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00142.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00142.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00112.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00112.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00138.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00138.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00148.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00148.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00179.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00179.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00158.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00158.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00131.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00131.html
https://doi.org/10.1145/3102980.3103006
https://doi.org/10.1145/3102980.3103006
https://doi.org/10.1007/11804192_17
https://doi.org/10.1145/1108792.1108813
https://www.bleepingcomputer.com/news/security/new-spectre-attack-recovers-data-from-a-cpus-protected-smm-mode/
https://www.bleepingcomputer.com/news/security/new-spectre-attack-recovers-data-from-a-cpus-protected-smm-mode/
https://www.bleepingcomputer.com/news/security/new-spectre-attack-recovers-data-from-a-cpus-protected-smm-mode/
https://doi.org/10.1145/1480881.1480921
https://forums.intel.com/s/question/0D50P000049060MSAQ/what-is-innovation-engine
https://forums.intel.com/s/question/0D50P000049060MSAQ/what-is-innovation-engine
https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html
https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/silver-celeron-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/silver-celeron-datasheet-vol-1.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://source.android.com/security/trusty
https://source.android.com/security/trusty
https://coq.inria.fr
https://linuxboot.org
https://github.com/trailofbits/mcsema
https://github.com/trailofbits/mcsema
http://smackers.github.io
https://github.com/littlekernel/lk
https://github.com/littlekernel/lk
https://www.tockos.org
https://cansecwest.com/csw09/csw09-duflot.pdf
https://cansecwest.com/csw09/csw09-duflot.pdf
https://software.intel.com/en-us/blogs/2017/06/06/finding-bios-vulnerabilities-with-excite
https://software.intel.com/en-us/blogs/2017/06/06/finding-bios-vulnerabilities-with-excite
https://code.fb.com/open-source/introducing-openbmc-an-open-software-framework-for-next-generation-system-management/
https://code.fb.com/open-source/introducing-openbmc-an-open-software-framework-for-next-generation-system-management/
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/1243418.1243424
https://doi.org/10.1145/1243418.1243424

HotOS ’19, May 13–15, 2019, Bertinoro, Italy Narayanan, Baranowski, Ryzhyk, Rakamarić, Burtsev

[49] Intel. [n. d.]. The EFI Development Kit II (EDKII) Project. https:
//github.com/tianocore/tianocore.github.io/wiki/EDK-II.

[50] Intel Security Advisory. 2017. Intel Active Management Technology,
Intel Small Business Technology, and Intel Standard Manageability
Escalation of Privilege. https://www.intel.com/content/www/us/en/
security-center/advisory/intel-sa-00075.html.

[51] Intel Security Advisory. 2018. Intel Q317 ME 6.x/7.x/8.x/9.x/10.x/11.x,
SPS 4.0, and TXE 3.0 Security Review Cumulative Up-
date. https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00086.html.

[52] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2018. RustBelt: Securing the Foundations of the Rust Programming
Language. In Proceedings of the 45th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL). 66:1–66:34. https://doi.
org/10.1145/3158154

[53] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. 2009. seL4: Formal Verification of an OS Kernel. In Pro-
ceedings of the 22nd ACM Symposium on Operating Systems Principles
(SOSP). 207–220. https://doi.org/10.1145/1629575.1629596

[54] K. Rustan M. Leino. 2008. This is Boogie 2. https://www.microsoft.
com/en-us/research/publication/this-is-boogie-2-2

[55] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for
Functional Correctness. In Proceedings of the 16th International Con-
ference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR). 348–370. https://doi.org/10.1007/978-3-642-17511-4_20

[56] Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal
Dutta, and Philip Levis. 2017. The Case for Writing a Kernel in Rust.
In Proceedings of the 8th Asia-Pacific Workshop on Systems (APSys).
1:1–1:7. https://doi.org/10.1145/3124680.3124717

[57] Frédéric Mangano, Simon Duquennoy, and Nikolai Kosmatov. 2017.
Formal Verification of a Memory Allocation Module of Contiki with
Frama-C: A Case Study. In Proceedings of the 11th International Confer-
ence on Risks and Security of Internet and Systems (CRiSIS). 114–120.

[58] Mark Ermolov. 2018. Twitter. https://twitter.com/_markel___/status/
982364102449393668.

[59] Ivan Herrera Mejia and Zeev Offen. 2017. Interface for Communica-
tion Between Circuit Blocks of an Integrated Circuit and Associated
Apparatuses, Systems, and Methods. US Patent 9,594,413.

[60] Ronald Minnich. 2017. Replace Your Exploit-Ridden Firmware with
Linux. Open Source Summit Europe + ELC Europe. https://www.
youtube.com/watch?v=iffTJ1vPCSo.

[61] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel:
Push-Button Verification of an OS Kernel. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP). 252–269. https:
//doi.org/10.1145/3132747.3132748

[62] Big Switch Networks. 2019. Open Net Linux - Hardware Support and
Certification. https://www.opennetlinux.org/hcl.

[63] Big Switch Networks. 2019. Open Network Linux. http://opennetlinux.
org/.

[64] Niko Matsakis. 2016. Introducing MIR. https://blog.rust-lang.org/2016/
04/19/MIR.html.

[65] OpenSwitch. 2019. OpenSwitch (OPX) Network Operating System.
https://www.openswitch.net/.

[66] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. 2016. NetBricks: Taking the V Out of NFV.
In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 203–216.

[67] Sean Peters, Adrian Danis, Kevin Elphinstone, and Gernot Heiser. 2015.
For a Microkernel, a Big Lock Is Fine. In Proceedings of the 6th Asia-
Pacific Workshop on Systems (APSys). 3:1–3:7. https://doi.org/10.1145/
2797022.2797042

[68] Open Compute Project. 2014. Open Compute Networking Project
Workshop. https://www.opencompute.org/wiki/Networking/
Workshop-2014-07.

[69] Zvonimir Rakamarić and Michael Emmi. 2014. SMACK: Decoupling
Source Language Details from Verifier Implementations. In Proceedings
of the 26th International Conference on Computer Aided Verification
(CAV). 106–113. https://doi.org/10.1007/978-3-319-08867-9_7

[70] Zvonimir Rakamarić and Alan J. Hu. 2009. A Scalable Memory Model
for Low-Level Code. In Proceedings of the 10th International Conference
on Verification, Model Checking and Abstract Interpretation (VMCAI).
290–304. https://doi.org/10.1007/978-3-540-93900-9_24

[71] Dmitry Sklyarov. 2017. Intel ME: The Way of the Static Analy-
sis. https://www.troopers.de/troopers17/talks/772-intel-me-the-way-
of-the-static-analysis/.

[72] Alexander Tereshkin and Rafal Wojtczuk. 2009. Introducing Ring
-3 Rootkits. https://invisiblethingslab.com/resources/bh09usa/Ring-
3Rootkits.pdf.

[73] Rafal Wojtczuk and Joanna Rutkowska. 2009. Attacking Intel Trusted
Execution Technology. https://invisiblethingslab.com/resources/
bh09dc/AttackingIntelTXT-paper.pdf.

[74] Rafal Wojtczuk and Joanna Rutkowska. 2009. Attacking SMM Mem-
ory via Intel CPU Cache Poisoning. https://invisiblethingslab.com/
resources/misc09/smm_cache_fun.pdf.

[75] Rafal Wojtczuk and Joanna Rutkowska. 2011. Attacking Intel TXT
via SINIT Code Execution Hijacking. https://invisiblethingslab.com/
resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf.

[76] Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and
Zhaohui Li. 2016. A Practical Verification Framework for Preemptive
OS Kernels. In Proceedings of the 28th International Conference on
Computer Aided Verification (CAV). 59–79. https://doi.org/10.1007/978-
3-319-41540-6_4

https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00075.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00075.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00086.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00086.html
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/1629575.1629596
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/3124680.3124717
https://twitter.com/_markel___/status/982364102449393668
https://twitter.com/_markel___/status/982364102449393668
https://www.youtube.com/watch?v=iffTJ1vPCSo
https://www.youtube.com/watch?v=iffTJ1vPCSo
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748
https://www.opennetlinux.org/hcl
http://opennetlinux.org/
http://opennetlinux.org/
https://blog.rust-lang.org/2016/04/19/MIR.html
https://blog.rust-lang.org/2016/04/19/MIR.html
https://www.openswitch.net/
https://doi.org/10.1145/2797022.2797042
https://doi.org/10.1145/2797022.2797042
https://www.opencompute.org/wiki/Networking/Workshop-2014-07
https://www.opencompute.org/wiki/Networking/Workshop-2014-07
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-540-93900-9_24
https://www.troopers.de/troopers17/talks/772-intel-me-the-way-of-the-static-analysis/
https://www.troopers.de/troopers17/talks/772-intel-me-the-way-of-the-static-analysis/
https://invisiblethingslab.com/resources/bh09usa/Ring -3 Rootkits.pdf
https://invisiblethingslab.com/resources/bh09usa/Ring -3 Rootkits.pdf
https://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
https://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
https://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
https://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
https://invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf
https://invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf
https://doi.org/10.1007/978-3-319-41540-6_4
https://doi.org/10.1007/978-3-319-41540-6_4

	Abstract
	1 Introduction
	2 Overview of RedLeaf
	3 Leveraging Rust for Verification
	4 Verification of the Core Kernel
	5 Conclusions
	Acknowledgments
	References

