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Abstract
A recent surge of security attacks has triggered a renewed
interest in hardware support for isolation. Extended page
table switching with VMFUNC, memory protection keys
(MPK), and memory tagging extensions (MTE) are just a few
of the hardware isolation mechanisms that promise support
for low-overhead isolation in recent CPUs. Along with the
restored interest in lightweight hardware isolation mecha-
nisms, safe programming languages like Rust has made a
leap towards practical, zero-overhead safety implemented
without garbage collection.

Both lightweight hardwaremechanisms and zero-overhead
language safety can be leveraged to enforce the isolation of
subsystems, e.g., browser plugins, device drivers and kernel
extensions, user-defined database and network functions, etc.
However, as both technologies are still young, their relative
advantages are still unknown. In this work, we study the
overheads of hardware and software isolation mechanisms
with the goal to understand their relative advantages and
disadvantages for fine-grained isolation of subsystems with
tight performance budgets. We ask two questions: What
is the overhead of hardware isolation in an ideal scenario
where the hardware isolation mechanism takes zero cycles?
And if the safety of the Rust language can lower the over-
head of cross-subsystem invocations, can the language on
its own introduce overheads that might outweigh isolation
advantages? To answer these questions, we develop and
compare two carefully optimized versions of inter-process
communication (IPC) mechanisms (one in safe Rust and one
in a carefully-optimized assembly), and two identical (to
the degree possible) DPDK-based network packet process-
ing frameworks (one in C++ and one in Rust). Our analysis
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shows that for systems requiring frequent boundary cross-
ings, a safe language is still beneficial even if the overheads
of hardware isolation mechanisms drop to zero.

1 Introduction
Despite significant academic interest in the performance of
hardware isolation primitives [17, 69, 71, 72], for decades
they remained a low priority in commodity CPUs. On x86
machines, segmentation was deprecated as part of the tran-
sition from 32-bit to 64-bit addressing mode, leaving page
tables as the only available isolation mechanism. Today, a
carefully-optimized, page-based inter-process communica-
tion (IPC) mechanism requires 814 cycles (on Intel) and 783
cycles (on ARM) to perform a cross-address-space function
call invocation [1].
A recent surge of security attacks, however, triggered a

renewed interest in hardware support for isolation. Mem-
ory Protection Keys (MPKs) and Extended Page-Table (EPT)
switching with VM functions [43] provide support for mem-
ory isolation with overheads gradually approaching [34, 52,
56, 68] the overhead of a function call. The newest ARM
CPUs introduce support for 16-byte-granularity isolation
with the Memory Tagging Extension (MTE) [4, 7], which is
critical for enabling low-overhead software-fault isolation
(SFI) implementations [46] and zero-copy exchange of data
across isolated subsystems.

Along with the restored interest in lightweight hardware
isolation mechanisms, safe languages have made a leap to-
wards practical, zero-overhead safety. Rust is a new systems
programming language that offers language safety without
garbage collection [44]. Rust enforces type and memory
safety through a restricted ownership model, assigning a
unique owner to each live object in memory. This allows for
static tracking of object lifetimes and thus static deallocation
without a garbage collector. The runtime overhead of the
language is limited to bounds checking, which in many cases
can be concealed by modern out-of-order CPUs that can
predict and execute the correct path around the check [21].

Both safe languages and hardware isolation mechanisms
can be used for fine-grained isolation of small untrusted sub-
systems [6, 11, 31, 34, 40, 47, 55, 56, 68]. As both approaches
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mature, questions of their practicality and relative advan-
tages for isolation arise. On one hand, the overhead of switch-
ing the isolation boundary with a hardware instruction is
becoming progressively lower, e.g., writing a pkru register that
changes the tag of the page table introduces an overhead
of only 20-26 cycles [34, 58]. However, it remains unclear
what the total cost of a secure IPC invocation will be even in
an ideal scenario when the switch of an isolation boundary
takes zero cycles. On the other hand, while providing low-
overhead cross-subsystem invocations with an overhead of
a function call, a safe language itself can introduce over-
heads (due to said safety) that might outweigh the benefits
of lightweight language-based isolation itself.
In this work, we explore the advantages and disadvan-

tages of safe and unsafe isolation approaches, especially for
systems in which fine-grained isolation, and hence frequent
cross-subsystem invocations, are critical; e.g., browser plug-
ins [61, 74], user-defined database functions [15, 66], network
functions [2, 38, 41, 51, 59, 62], device drivers [27, 29, 67],
storage systems [13], and kernel modules [12, 24, 28, 33, 35–
37].
To understand the performance benefits of the two ap-

proaches (hardware-based isolation and language safety), we
develop a carefully optimized implementation of a hardware-
based IPC mechanism that assumes a zero-cycle cost of
switching the isolation boundary. We then perform a de-
tailed analysis of the overheads involved in implementing a
secure cross-subsystem function invocation in both unsafe
C++ and safe Rust.
We find that the overhead of implementing a secure IPC

with a zero-cost hardware isolation primitive remains high.
Two inherent reasons are the need to save and restore callee-
saved general and extended registers and the requirement to
switch to a new stack. Even if the cost of the hardware switch
instruction drops to zero, a cross-subsystem invocation takes
111-406 cycles (Section 3).

In contrast to hardware-based IPC, safe languages provide
isolation with the overhead of a function call [5, 9, 11, 30, 40,
55, 70]. The execution can continue on the same stack (safety
ensures isolation of objects on the stack) and does not require
saving and restoring general and extended registers (calling
conventions save and restore registers between the caller
and callee, and exception handling, i.e., unwind, mechanisms
allow recovery from a fault in an untrusted subsystem).

To understand whether safety itself introduces prohibitive
overhead in real applications, we develop two implementa-
tions (one in C++ and one in Rust) of a network function
processing framework similar to Netbricks [57]. We analyze
the performance difference between C++ and Rust by de-
veloping identical (to the degree possible) implementations
of several representative network functions. We find that
while high-level Rust abstractions can introduce significant
overhead, a carefully planned (with respect to performance)

Rust implementation remains fast and executes within 4-8%
of unsafe C++.
Our analysis shows that for systems requiring frequent

boundary crossings a safe language is still beneficial even if
the performance of hardware isolation mechanisms drops
to zero. Moreover, high-level safety and type guarantees
allow safe languages to provide high-level isolation invari-
ants, e.g., fault isolation and clean termination of crashing
subsystems [6, 11, 40, 55].
Of course, safety comes at the price of restricting devel-

opment to a specific language, and a larger trusted com-
puting base—the language itself, and a trusted compilation
environment required to ensure the safety of third-party
extensions [11, 47, 55]. We, therefore, hope that our analysis
of hardware-based IPC mechanisms will help hardware de-
signers to improve the performance of hardware isolation
primitives even further. Specifically, we argue that one of the
twomain sources of overheads—saving and restoring general
and extended registers—should be optimized in hardware.

2 Anatomy of Safe and Unsafe IPCs
Before diving into the analysis of language and hardware-
based IPC implementations, we discuss the internal orga-
nization of both mechanisms. The IPC mechanisms which
arguably were one of the hottest areas of system research
accumulate a long history of innovation aimed at improving
security and performance through a broad range of abstrac-
tions and implementation designs that spanned microker-
nels [1, 3, 8, 20, 25, 31, 33, 39, 45, 48, 52, 63], operating sys-
tems [10, 34, 54, 56, 64, 68], hypervisors [26], language-based
operating systems [5, 30, 40, 55, 70], software fault-isolation
(SFI) frameworks [14, 23, 46, 50], and interface definition
language compilers [18, 32].
Unsafe IPC path Traditionally, IPC mechanisms require
assistance from a privileged, ring 0, kernel code to switch the
address space between the callee and the caller. The kernel
was responsible for saving the state of the caller, enforcing
security checks, switching the address space, and finally,
switching the execution from the caller to the callee [45].
Most recent hardware isolation primitives, e.g., MPK [43]
and VMFUNC [31], provide support for an exitless IPC path,
i.e., it is possible to implement a secure IPC mechanism that
avoids entering the kernel and transitions between the caller
and the callee through a small trusted trampoline directly
in ring 3 [34, 52, 68]. The option to avoid exiting into the
kernel on the critical path significantly reduces the cost of
the IPC (on modern x86 hardware, the system call required
to enter and leave the kernel takes 96-140 cycles without
KPTI mitigations [34, 56]).

As an alternative to synchronous address space switches,
on a multi-core machine, an IPC can be implemented as a
cross-core invocation that relies on cache-coherence to trans-
fer the message between the cores [8, 39, 54, 64]. While faster
than address space switches, the cross-core invocations are
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still expensive. A minimal call/reply invocation requires four
cache-line transactions and takes 448-1988 cycles depending
on whether the line is transferred between the cores of the
same socket or over a cross-socket link [54].
To analyze the overheads of a minimal IPC path, we de-

scribe a minimalistic implementation of an exitless IPC (List-
ing 1). We assume the future hardware mechanism similar to
MPK and VMFUNC that provides a way to instantly switch
the address space between the caller and the callee with a
non-privileged instruction (in our implementation we substi-
tute such future instruction with a nop). Our IPC implements
a migrating threads model of invocation [25], in which the
caller thread enters the address space of the callee without
the context switch. Specifically, the caller saves its state on
the stack, switches into the address space of the callee with
a hardware mechanism similar to wrpkru or vmfunc, picks a new
stack inside the callee address space, and continues execution
calling a callee function. To minimize the invocation cost,
we pass a fixed number of arguments in registers following
the C calling convention. While it is possible to implement a
general calling convention that uses memory to pass mes-
sages of arbitrary length similar to seL4 [45], to keep our
experiments concise, we instead implement a simple ABI
that passes several arguments in registers. On the caller side,
we first save extended registers with the fxsave instruction
(lines 2–6) that takes a pointer to the memory location in
the rax register (we allocate 512 bytes on the caller’s stack
which have to be 16 bytes aligned). We then save callee saved
registers on the stack (lines 9–15) and zero out all general
registers not used to pass the arguments and all extended
registers (18–23). After that, we switch domain boundary
executing a nop instruction under the assumption that the
future hardware mechanism will have a one cycle overhead
(line 31).

Inside the callee domain, we try to allocate a new stack
from a pool of available stacks. We maintain a lock-free stack
data structure fromwhich we dequeue elements with a single
cmpxchg instruction. We first check if there is at least one free
stack on the list by checking if the head of the list is empty
(33–35) and then perform an attempt to dequeue one element
(38–43). Here we assume that the global variable RT_FREE_LIST

that maintains the head of the free list is accessible in the
callee domain.

Safe IPC Path A safe language like Rust can provide iso-
lation through the safety of a programming language. The
language provides mechanisms to control access to the state
of the program at module and class boundaries by specifying
fields of individual objects as public or private. Isolated parts
of the program have access to the state transitively reachable
through public global variables and explicitly passed argu-
ments. Control over references and communication chan-
nels allows isolating the state of the program on function

1 ; fxsave target must be 16-byte aligned
2 mov rax, rsp
3 sub rsp, 512
4 and rsp, -16
5 fxsave [rsp]
6 push rax
7
8 ; save callee-saved registers
9 push rbp
10 push rbx
11 push r12
12 push r13
13 push r14
14 push r15
15 pushfq
16
17 ; zero out registers (rax, rbx, rbp, rsp, r10-r15)
18 xor rax, rax
19 xor rbx, rbx
20 ...
21 xor r15, r15
22 ; zero out extended registers
23 vzeroall
24 %ifdef UNWIND
25 ; switch to kernel
26 nop
27 ; handle continuation stack
28 ...
29 %endif
30 ; switch to callee
31 nop
32 .try_getting_stack:
33 mov rax, [RT_FREE_LIST]
34 cmp rax, 0
35 jne .stack_available
36 ...
37 .stack_available:
38 mov r10, rax
39 add r10, CALL_NEXT
40
41 ; try to remove from free list
42 mov r11, [r10] ; .next
43 lock cmpxchg [RT_FREE_LIST], r11
44 jnz .try_getting_stack
45
46 ; set callee rsp
47 mov rsp, r10
48 ...
49 ; we are ready to call callee
50 ...

Listing 1. IPC path (Intel x86-64 ASM)

and module boundaries enforcing confidentiality and in-
tegrity, and, more generally, constructing a broad range
of least-privilege systems through a collection of object-
capability patterns [53]. Recent systems develop support
for dynamic loading of Rust extensions [11, 47, 55] hence en-
abling process-like development and execution environment
in a safe language.
In a safe language, a minimal isolation boundary can be

implemented as a private class or module [6, 47, 57]. In such
a system the IPC mechanism is simply a function call in-
vocation of a method exported by a protected subsystem.
Naturally, this eliminates multiple overheads of unsafe IPC.
First, the safety guarantees protect the general and extended
registers between the callee and the caller, i.e., the calling
convention ensures that original values of the callee regis-
ters are saved and restored, hence there is no need to save
and restore the registers upon entering an untrusted callee
subsystem. Second, the execution can continue on the same
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stack, therefore eliminating the overhead of picking a new
stack in the callee domain.
2.1 Unwind and Error Handling

The minimal IPC implementations presented above enforce
confidentiality and integrity across isolated subsystems, i.e.,
one subsystem cannot read and modify data of other sub-
systems. These mechanisms, however, provide no way of
isolating faults across subsystems—a crash in any of the iso-
lated subsystems halts the entire system requiring a restart.
To isolate a fault, the IPC subsystem should provide a mech-
anism to unwind the execution of a thread from a crashing
subsystem returning an error to the caller.
Unsafe unwind To unwind execution of a thread from a
crashing subsystem, our IPC code records the state of the
thread right before entering the callee subsystem. Before
switching into the callee, we first switch into the address
space that can be accessed by the kernel (line 26). We assume
that each thread has a region of thread-local memory acces-
sible from inside the kernel, for example, relative to the gs

register. Inside this portion of the kernel-accessible address
space we implement the following logic on each invocation:
1) The IPC code checks if the subsystem is alive before per-
forming the invocation. If the subsystem is alive, the IPC
records the fact that the thread moves between subsystems.
We use this information to unwind all threads that happen
to execute inside the crashing subsystem. 2) For each invoca-
tion, the IPC code creates a lightweight continuation that cap-
tures the state of the thread right before the cross-subsystem
invocation. Specifically, inside the kernel subsystem we save
the caller’s stack pointer—the register state of the caller is
already saved on the caller’s stack, therefore it is sufficient
to save only the stack address. The continuation allows us
to unwind the execution of the thread, and return an error
to the caller. If we have to unwind the thread, the kernel
restores the stack to the state captured by the continuation
and returns an error to the caller.
Safe unwind In a safe language, unwinding is possible with
native language support for catching exceptions. The benefit
of exception handling is that the state of all registers can
be restored by iterating over the stack frames that contain
the saved value for each register. This eliminates the need
for explicit register saving and restoring on each invocation
and instead incurs the costs of unwinding only if the thread
panics.
Rust implements support for catching panics modeled

after the Itanium C++ ABI [42]. To restore register state of
the caller to the state at the cross-subsystem invocation, a
common personality routine is invoked repeatedly for every
stack frame, hence unwinding the stack up to the point at
which the exception can be handled and an error can be
returned to the user. Unwinding relies on the debugging
information embedded into the binary to restore register
state between stack frames.
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Figure 1. Overhead of Safe and Unsafe IPC

3 Performance Analysis
We run our experiments on CloudLab [60] c220g2 servers
configured with two Intel E5-2660 v3 10-core Haswell CPUs
running at 2.60 GHz, 160 GB RAM, and a dual-port Intel
X520 10GbE NIC. Linux machines run 64-bit Ubuntu 20.04
with a 5.4.0 kernel configured without any speculative exe-
cution attack mitigations (mitigations=off) reflecting the trend
of recent Intel CPUs addressing a range of speculative execu-
tion attacks in hardware. In all the experiments, we disable
hyper-threading, turbo boost, CPU idle states, and frequency
scaling to reduce the variance in benchmarking.

3.1 Safe vs Unsafe IPC

We first analyze the overheads of safe and unsafe IPC imple-
mentations discussed in Section 2. Specifically, we compare
four IPC variants. First, we benchmark a minimal unsafe
IPC which we described in Section 2: we assume a one cy-
cle hardware primitive that switches the isolation boundary.
We evaluate two different configurations of this IPC: with
(hw-fxsave) and without (hw-no-fxsave) saving extended regis-
ters. Second, we implement a minimal safe IPC in Rust that
utilizes the standard library and its unwind implementa-
tion to unwind from crashing subsystems, but provides no
fault isolation mechanisms (rust-std). Finally, we implement
our safe IPC ideas in the RedLeaf operating system [55].
RedLeaf supports fault isolation through a combination of
heap isolation and cross-subsystem invocation proxying. Our
experiments are aimed at evaluating the overhead of fault
isolation. Specifically, we run two configurations: 1) an orig-
inal RedLeaf implementation [55] that saves and restores all
registers similar to our unsafe IPC (redleaf), and 2) our new
implementation that relies on our custom unwind library
that we implemented for RedLeaf (redleaf-unwind).
Our experiments measure IPC overheads on a chain of

cross-subsystem invocations (Figure 1). We vary the length
of the chain from 1 to 16. Each invocation simply invokes
the next subsystem in a chain and then returns. In all experi-
ments, we measure the total time to execute ten million itera-
tions. An unsafe IPC implementation needs 111-164 cycles to
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perform a null cross-subsystem invocation (hw-no-fxsave). The
overhead is increasing as the invocation chain is growing.
To explain performance degradation, we utilized the Intel
VTune profiler to collect a range of hardware performance
events related to cache and memory utilization. As the chain
grows, saving and restoring general registers touches differ-
ent memory pages that hold different stacks of the thread in
each subsystem. The execution becomes memory-bound due
to higher pressure on the L1 cache and data TLB. Saving and
restoring general registers takes 35-71 cycles. The atomic
exchange operation which is needed to dequeue a free stack
in the callee domain takes 28-59 cycles. The atomic exchange
instruction is the major contributor to the stack switching,
without it picking a stack takes only 10 cycles. Saving and
restoring extended registers introduces an overhead of ad-
ditional 216-242 cycles at the total cost of 327-406 cycles
for a cross-subsystem invocation (hw-fxsave). Zeroing all gen-
eral registers introduces an overhead of only 3 cycles. With
saving and restoring extended registers, the performance
impact of the invocation chain is even more profound—the
execution becomes memory-bound. Moreover, the need to
save extended registers creates enough pressure that fxrstor

instruction experiences L3 latency in 71% of accesses.
Safety guarantees of Rust allow us to perform cross-sub-

system invocations with an overhead of a function call, 1-7
cycles (rust-std). As the execution continues on the same
stack, Rust avoids cache and data-TLB bottlenecks by stay-
ing on the same continuous stack page. Our unwind-based
RedLeaf IPC approaches the cost of a function call with only
16-18 cycles per domain crossing. To ensure safety and fault
isolation, in RedLeaf the execution crosses through a proxy
that checks if the callee subsystem is alive and moves the
ownership of all RRef<T> arguments (we pass one RRef<T> in
this test). This experiment highlights the importance of the
unwind mechanism. Without unwind, an original version
of RedLeaf IPC that creates a continuation takes 73-120 cy-
cles (redleaf). Note, that RedLeaf disables the use of extended
registers, hence they are not saved. It is still faster than an
unsafe IPC as it can continue on the same stack.
In general, we observe that a safe, unwind-based invo-

cation approach the performance of a non-isolated unsafe
system.

3.2 Application Benchmarks

To understand the impact of IPC performance in real-world
applications, we implement a network function virtualiza-
tion framework similar to Netbricks [57]. Today, a wide range
of network functions (NFs) handle the most complex network
tasks such as intrusion detection, packet filtering, load bal-
ancing, etc. NFs are typically deployed as a part of a service
chain that together processes a stream of packets.

In a modern network, NFs are often built as independent
software by third-party vendors and have a set of unique
requirements centered around performance, isolation, and
reliability. NFs often have conflicting reliability and security
goals and require isolation [49, 51, 65, 73, 75]. Isolation of NFs
remains a challenging problem due to stringent performance
requirements of packet processing applications [2, 38, 41, 51,
59, 62]. Traditional mechanisms that can enforce isolation
boundaries — hardware primitives, software fault isolation
(SFI), and language safety — impose overheads that are too
high for systems that execute at line rate.
To understand the overheads of isolation, we implement

the same network functions in C++ and Rust. Both implemen-
tations use the DPDK network processing framework [16] to
provide low-overhead access to the network interface. Both
the C++ and Rust versions operate on a batch of packets
(we form the batch using the C DPDK functions which are a
trusted part of the system, and hence require no isolation).
Then we either call a C++ version of each network function
(no isolation is provided) or enter the Rust environment that
enforces isolation across individual functions of the network
chain.
We implement four network functions: (1) TTL which

decrements the time-to-live field in a packet’s IPv4 header,
(2) NAT which rewrites the source IP and port of a packet
according to a mapping, (3) ACL Firewall which allows
or drops a packet based on a list of pre-defined rules, and
(4) Maglev which is a load balancer developed by Google
to evenly distribute incoming client flows among a set of
backend servers [19]. For each new flow, Maglev selects
one of the available backends by performing a lookup in a
hash table, the size of which is proportional to the number
of backend servers (65,537 in our experiments). Consistent
hashing allows even distribution of flows across all servers.
Maglev then records the chosen backend in a hash table, a
flow tracking table, that is used to redirect packets from the
same flow to the same backend server. The size of the flow
tracking table is proportional to the number of flows (we
choose 1M flows for our experiments). Processing a packet
requires a lookup in the flow tracking table if it is an existing
flow, or a lookup of a backend server and an insertion into
the flow tracking table to record the new flow.

3.2.1 Overheads of Language Safety We first analyze
the performance impact of a safe language—after all if safety
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TTL NAT ACL Maglev
C++/Rust

Instructions 120/171 235/318 355/351 267/302
Cycles 57/70 149/139 110/142 197/216
Branches 13/22 25/33 44/37 20/33
Branch mispr. 0.04/0.06 0.04/0.05 0.12/0.06 0.06/0.09
Table 1. Microarchitectural comparison of C++ vs Rust

on its own introduces an overhead that is higher than hard-
ware isolation in an unsafe language using safety for iso-
lation does not make sense. We compare performance and
several microarchitectural characteristics for the C++ and
Rust implementations of our network functions (Table 1).
Specifically, we collect the number of instructions generated
by the compiler and the number of cycles required to execute
each network function.
In general, for simple network functions like TTL, NAT,

and ACL, the Rust and C++ code have similar characteristics,
i.e., the Rust code stays within 13-35% of the number of gen-
erated CPU instructions for all but the trivial TTL function,
and within 7-29% of cycles which are required to execute
the function (taking fewer cycles than C++ on NAT). In all
functions but ACL, Rust uses a higher number of branch
instructions to implement bounds checks, and encounters a
slightly higher rate of branch mispredictions.
To understand the performance impact of safety on real-

world applications, we compare performance of the network
function chain implemented in C++ and Rust on varying
batch sizes (Figure 2). In our tests, we send 64-byte packets
and measure the performance on several batch sizes ranging
from 1 to 32 packets. We use a packet generator based on
ixy [22]. The generator generates 64-byte IPv4 UDP pack-
ets at line rate and cycles through 1M different source IP
addresses to simulate the presence of multiple flows.
Overall, Rust is 4-8% slower. The major difference is in

the use of high-level abstractions which differ between the
two languages. For example, Rust relies on the notion of
interior mutability to break strict ownership rules through a
collection of trusted, standard types, e.g., mutexes (Mutex<T>),
reference-counted pointers (Rc<T> and Arc<T>), etc., that en-
force ownership at run-time. Naturally, run-time checks,
and specifically additional pointer dereferences which cre-
ate a higher cache pressure might negatively affect perfor-
mance. Similar, high-level language abstractions, like option
(Option<T>) types, add additional bytes to the data structure
they wrap and hence break cache-line alignment [55].

3.2.2 Overheads of Isolation To understand the perfor-
mance impact of various isolation mechanisms on real-world
applications, we isolate network functions in C++ and Rust
(Figure 2). We use Rust to enforce the confidentiality and
integrity of each network function (rust). This is a default
guarantee provided by Rust through its safety—each network

function can access the state of the program that is reach-
able through public variables and fields (a similar isolation
scheme was implemented by Netbricks [57]). We compare
the Rust implementation against the C++ version that relies
on hardware-based isolation. To understand the impact of
saving and restoring extended registers, we evaluate two
configurations: one that uses extended registers and hence
has to save them as part of the IPC (C++-hw-fxsave) and one
that disables the use of extended registers (C++-hw-no-fxsave).
Our goal is to evaluate whether the use of extended regis-
ters can outweigh the cost of saving and restoring them on
cross-subsystem invocations.

On small batch sizes, the cost of hardware-based IPC isola-
tion impacts the performance of the network function chain.
Without extended SIMD registers, on a batch of one, an
isolated C++ chain (C++-hw-no-fxsave) achieves only 54% perfor-
mance of non-isolated code. Saving and restoring extended
SIMD registers adds significant overhead, allowing the con-
figuration that uses them (C++-hw-fxsave) to achieve only 31%
performance of non-isolated code. The overheads of hard-
ware IPC become amortized on larger batch sizes, allowing
both SIMD and non-SIMD versions to match and even out-
perform by 5% Rust equivalents. Overall, while extended
registers provide tremendous optimization opportunities, in
simple network functions the performance of SIMD and non-
SIMD code is nearly identical (we measure it to be within
1%). Naturally, with the current cost of saving and restor-
ing extended registers, their benefit can be realized only in
carefully optimized vectorized code.

4 Conclusions
After decades of relatively slow adoption, we finally see a
renewed interest in hardware isolation mechanisms. For-
tunately, this interest coincides with rapid progress in the
domain of practical language safety designed to support the
development of low-level systems code and hence provide
an alternative way to implement isolation. We study the
overheads of hardware isolation in an ideal scenario—the
address space switch takes zero cycles—and compare the per-
formance of hardware mechanisms with isolation enforced
through the safety of Rust. Our analysis shows that even in
this ideal scenario the cost of hardware isolation remains
high due to the need to save general and extended register
state and the requirement to switch stacks between isolated
subsystems. Rust avoids these two overheads implementing
isolation with an overhead of a function call. Moreover, we
observe that on realistic workloads Rust incurs only minor
overhead of 4-8% compared to unsafe C++.
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