
DRAMHiT: A Hash Table Architected for the Speed of
DRAM

Vikram Narayanan
University of Utah

David Detweiler
University of California,

Irvine

Tianjiao Huang
University of California,

Irvine

Anton Burtsev
University of Utah

Abstract
Despite decades of innovation, existing hash tables fail to
achieve peak performance onmodern hardware. Built around
a relatively simple computation, i.e., a hash function, which
in most cases takes only a handful of CPU cycles, hash tables
should only be limited by the throughput of the memory
subsystem. Unfortunately, due to the inherently random
memory access pattern and the contention across multiple
threads, existing hash tables spend most of their time wait-
ing for the memory subsystem to serve cache misses and
coherence requests.
DRAMHiT is a new hash table designed to work at the

speed of DRAM. Architecting for performance, we embrace
the fact that modern machines are distributed systems—
while the latency of communication between the cores is
much lower than in a traditional network, it is still dominant
for the hash table workload. We design DRAMHiT to apply
a range of optimizations typical for a distributed system:
asynchronous interface, fully-prefetched access, batching
with out-of-order completion, and partitioned design with a
low-overhead, scalable delegation scheme. DRAMHiT never
touches unprefetched memory and minimizes the penalty
of coherence requests and atomic instructions. These opti-
mizations allow DRAMHiT to operate close to the speed of
DRAM. On uniform key distributions, DRAMHiT achieves
973Mops for reads and 792Mops for writes on 64-thread Intel
servers and 1192Mops and 1052Mops on 128-thread AMD
machines; hence, outperforming existing lock-free designs
by nearly a factor of two.

CCS Concepts: • Computing methodologies → Parallel
computing methodologies; • Theory of computation
→ Bloom filters and hashing.

ACM Reference Format:
Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton
Burtsev. 2023. DRAMHiT: A Hash Table Architected for the Speed
of DRAM. In Eighteenth European Conference on Computer Systems

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroSys ’23, May 8–12, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9487-1/23/05.
https://doi.org/10.1145/3552326.3587457

(EuroSys ’23), May 8–12, 2023, Rome, Italy. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3552326.3587457

1 Introduction
Today, hash tables are among the most critical building
blocks for modern data-intensive applications. Examples
include key-value stores [33], databases [2, 3, 7, 25, 56], ge-
nomic andmeta-genomic analysis [36, 46], dynamic program-
ming [59], model checking [60, 63], graph processing [35, 38],
matrix multiplication [1], request load balancing [8], and
many more. A common characteristic of such applications
is that the hash table accesses dominate the execution time
of the program.

Internally, the hash table performs a simple computation:
taking a string of bits (a key) as an input, it computes a
hash which is then used as an address to access the value
associated with the key. The hash function is designed to
uniformly distribute the storage locations for key and value
tuples across the entire memory occupied by the hash table.
The computation of a hash function takes only a few cycles.
For example, a hardware-supported CRC32 hash function can
be computed in 2-3 CPU cycles, while the more sophisticated
CityHash [15] function takes 16-20 cycles on an 8-byte key.
Despite minimal computation, the fastest hash tables spend
150-300 cycles per lookup and insertion operation [35].

With only a few cycles required to compute the hash func-
tion, modern hash tables spend most of the request process-
ing time waiting on the memory subsystem while it serves
memory misses and coherence requests. While the path of
a cache miss through the memory subsystem is different
for small and large datasets, both incur a significant perfor-
mance penalty. For a large dataset (e.g., several times larger
than the caching hierarchy of the CPU), the miss results in a
transfer of a cache line from either local or remote memory,
i.e., the memory attached to a memory controller of another
socket. For a small dataset that fits in the caching hierarchy
of the CPU, the miss results in a transfer of a cache line from
the cache of another core or a last-level cache of the local
or remote die on which it was most recently accessed. If the
cache line is still on the same die, the penalty is relatively low
(54-132 cycles depending on whether the cache line is evicted
into the last level cache or is still present in private caches
of other cores [6, 64]). Access across dies can reach 320-431
cycles due to the overhead of cross-socket links [6, 64].
Moreover, on datasets with high skew—e.g., 90% of re-

quests accessing 10% of keys—coherence requests suffer from

https://doi.org/10.1145/3552326.3587457
https://doi.org/10.1145/3552326.3587457

EuroSys ’23, May 8–12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

contention, which requires expensive cache directory opera-
tions, and serializing access across multiple cores [4]. The
latency of a contended coherence request, combined with
the high probability of acquiring a cache line in an exclusive
state, can reach thousands of cycles (Figure 2).
Today’s hash tables are fundamentally limited in their

peak performance due to the decades-old design choice of
treating memory as a subsystem with a synchronous inter-
face. Despite the fact that hash tables employ a range of
optimizations to reduce the number of cache misses through
the utilization of compact, cache-friendly layouts and algo-
rithms [13, 17, 20, 24, 29, 32, 34, 40, 48, 50, 61, 68], at least
one memory miss per operation remains unavoidable due to
random accesses to the memory of hash table that is larger
than caches of the CPU. While modern CPUs are capable
of partially hiding the cost of the miss through speculative
execution, the cost of the memory stall remains high. Funda-
mentally, the latency of the memory miss defines the upper
limit on the performance of the hash table.

Our work explores the design space of hash tables aimed
at achieving optimal performance on modern hardware. Ar-
chitecting for performance, we embrace the fact that modern
machines are distributed systems with local non-uniform
memory and non-uniform caches—while the latencies of
memory controllers and the coherence protocol are much
lower than in the network, they are an order of magnitude
larger than the rest of the hash table processing path. To
hide the latencies of modern memory and coherence sub-
systems, we develop a range of optimizations typical for a
distributed system: asynchronous interface, fully-prefetched
access, batching with out-of-order completion, and parti-
tioned designwith low-overhead, scalable delegation scheme.
While many of our ideas are not new, the main engineering
challenge and contribution of our work is the ability to im-
plement these optimizations with a budget in the low tens
of cycles, in contrast to the thousands of cycles typical for
distributed systems and prior approaches.
To avoid memory misses on the critical path, we change

the interface of the hash table to support asynchronous sub-
mission of requests and out-of-order completion. This allows
us to avoid wasting the CPU cycles on accesses to cache lines
residing in memory or remote caches. In our design, the hash
table never touches unprefetched memory. The application
submits a batch of requests. The hash table computes mem-
ory addresses corresponding to the keys, and prefetches the
memory locations involved in the operations, putting re-
quests on the queue of the prefetch engine, but not touching
those addresses. After enough elements are accumulated on
the queue and enough time has passed for the prefetched
cache-lines to reach the first-level caches of the CPU, the
hash table processes the operations, potentially issuing more
prefetches for keys that require additional memory accesses
to resolve hash conflicts, i.e., reprobes. Pending reprobe re-
quests are put back on the request queue.

Out-of-order completion allows us to eliminate degrada-
tion due to requests that trigger a large number of reprobes.
The hash table interface takes a batch of requests and returns
a batch of responses, potentially out-of-order. Requests that
take very long to complete due to a large number of reprobes
are returned later in subsequent invocations.
To avoid contention for workloads with a high skew, we

extend our basic asynchronous design with support for dele-
gation and partitioning. Partitions are visible to every read-
ing thread. This allows us to process read operations locally
by any of the threads accessing the hash table. Reads require
no writes or atomic instructions, and hence, do not invalidate
the cache-lines of other readers. To avoid expensive coher-
ence conflicts on update operations, we delegate updates to
the threads responsible for managing write access to each
partition. We rely on explicit message passing to implement
a scalable delegation scheme that relays update requests to
a collection of update threads. Under contention, delegation
allows us to outperform hardware coherence protocols.

Finally, we treat the throughput of the memory subsystem
as an explicit resource. Hence we employ a range of opti-
mizations to meet the cycle budget enforced by the memory
subsystem.
Novel design decisions allow us to construct DRAMHiT,

a hash table that approaches the speed of modern multi-
channel memory subsystems. On uniform key distributions,
DRAMHiT achieves 973 Mops (reads) and 792 Mops (writes)
on dual-socket 64-thread commodity Intel servers and 1192
Mops (reads) and 1052 Mops (writes) on a two-socket 128-
thread AMD machine hence outperforming existing lock-
free designs by nearly a factor of two. DRAMHiT explicitly
trades increased latency of hash table operations for through-
put. We believe that such a tradeoff is justified for a wide
range of practical workloads. On a metagenomic benchmark,
a partitioned version of DRAMHiT outperforms the fastest
hash table equivalents by a factor of four.

2 Background
Modern hash tables have accumulated decades of algorithmic
optimizations and engineering innovation geared at improv-
ing the performance of hashing functions, optimizing utiliza-
tion of the caching hierarchy, minimizing overheads of syn-
chronization, and much more. Recent advancements in CPU
design—increasing core count, switching to non-uniform
memory and cache architectures, and growing memory size
and bandwidth—change the balance of engineering tradeoffs
required to achieve peak hash table performance.
Memory bandwidth and cycle budgets Modern servers
are non-uniform memory access (NUMA) machines. A typi-
cal server is deployed with several processor nodes (sockets)
connected with a cross-socket link, ultra-path interconnect
(UPI) on Intel machines (Figure 1). Each socket contains mul-
tiple CPU cores and several memory controllers connected
to local DRAM. Each memory controller relies on a group

DRAMHiT: A Hash Table Architected for the Speed of DRAM EuroSys ’23, May 8–12, 2023, Rome, Italy

LLC
UPI

Memory
channels

MC

...

LLC

...

Cores

MC
3

3
MC

MC

Figure 1. Memory subsystem of a two-socket, 32-core Intel server.

Table 1. Theoretical and measured bandwidth and cycle budget
per one cache-line transaction if issued from 32 logical cores of one
socket configured with six memory channels.
Configuration Bandwidth (GB/s) Cycle budget
Theoretical 127.8 41.6
Seq reads 111.0 48.3
Seq reads-writes (1:1) 95.4 55.8
Seq reads-writes (2:1) 97.5 54.5
Random reads 85.4 62
Random reads-writes (1:1) 76.3 69.7
Random reads-writes (2:1) 81.3 65.4

of memory channels to communicate with dual inline mem-
ory modules (DIMMs). Figure 1 shows the organization of a
modern two-socket Intel server as an example. Each socket
has two memory controllers. Each controller is connected to
three memory channels (16 cores and six memory channels
per socket). While we use an Intel machine as an example,
conceptually, modern AMD CPUs have a similarly organized
memory subsystem [64].
Intel CPUs can access the first-level cache at a rate of

2.9-116.25 bytes per cycle depending on the location in the
last-level cache, i.e., cache bank, and the instruction used to
perform the access [64]. Furthermore, they achieve a through-
put of 2.2-52.9 bytes per cycle to L2 and 1-18 bytes per cycle
to L3 level caches [64]. This organization provides sufficient
bandwidth for accessing all levels of the caching hierarchy.

However, the bandwidth of the memory subsystem is lim-
ited. Two factors determine the performance of the memory
subsystem: the number of memory channels, and the speed
of the DRAM banks. Modern DDR4 DRAM memory per-
forms 2666 Mega-Transactions per second (each transaction
allows a read or write of an 8 byte value). At 2666 MT/s,
one memory channel can deliver a theoretical bandwidth of
21.3 GB/s (a six-channel system of one socket can achieve a
theoretical throughput of 127.8 GB/s).
CPUs, however, communicate with DRAM in units of

cache-lines (64 bytes). Therefore, to access even one byte
of data, the CPU will issue a cache-line read; hence con-
suming 64 bytes of memory bandwidth. A single memory
channel is capable of performing 333.2 million cache-line
reads or writes per second (a six-channel system achieves 1.9
billion cache-line transactions). Hence, to keep the memory

subsystem saturated, a single-socket system should issue a
cache-line transaction every 0.5 nanoseconds. If all 16 cores
are used to perform memory operations, each core has to
submit a cache-line transaction every 8 ns, or 20 cycles on a
2.6GHz machine (or 40 cycles if each core runs two hardware
threads of execution).

In practice, modern servers achieve only a fraction of the
theoretical memory bandwidth. We use the Intel Memory
Latency Checker (MLC) [5] to measure the performance of
the memory subsystem of an Intel Xeon Gold 6142 16-core
Skylake CPU running at 2.6 GHz, with six populated memory
channels per-socket and 384 GB RAM (Table 1). We run MLC
on one socket of the two-socket server, using all available 32
logical threads, and restricting memory accesses to the local
NUMA node of the socket. The bandwidth changes between
sequential and random accesses and with the composition of
reads and writes. The system achieves 111 GB/s or 87% of the
theoretical bandwidth on a sequential read-only workload
(for random reads that are typical for the hash table memory
access, the bandwidth drops to 85.4 GB/s). Ourmeasurements
are in line with Velten et al. [64]. Since in a typical scenario
insertion into a hash table performs one or more reads due
to hash conflicts and one write, we also measure achievable
throughput on the workload that generates one and two
reads per one write. Empirical measurements allow us to
make the following observation:

In order to saturate the memory subsystem, our exam-
ple Intel system has a budget of 62 CPU cycles for the
read-only lookup operation and 140 cycles for the in-
sertion operation that requires one read and one write
(69.7 cycles each).

Note that on Intel SkyLake CPUs, reads from remote
NUMA nodes result in a write [23]. The reason stems from
the fact that the CPU implements a “directory” feature that
tracks the state of each cache line on remote NUMA nodes.
The state of the cache line is maintained along with the error
correction bits in memory. When the cache line is read from
a remote NUMA node, it is read in an “exclusive” state (an
optimization that allows the reader to write the cache line
without requesting further permissions). Unfortunately, this
requires a write-back of a cache line to clear the “directory”
bit when the cache line is evicted. Therefore, all reads that
access remote NUMA nodes will result in an additional write
transaction (roughly half in our configuration). In our ex-
periments, at 75% fill, an average lookup accesses 1.3 cache
lines (and hence triggers 0.75 write transactions due to 50%
reads accessing remote NUMA node).

Overheads of synchronization and coherence Concurrent
access to the memory of a hash table from multiple cores
results in two distinct sources of overhead: transfer of cache
lines between caches and contention (i.e., linearization of
concurrent accesses to the same cache line). Intel and AMD

EuroSys ’23, May 8–12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

CPUs implement a version of the MESI cache-coherence
protocol [42]. To access a cache line for read or write, the
core performs a coherence request that brings it into the
first-level cache of the core from either memory or different
levels of the caching hierarchy (i.e., local and remote L1, L2,
and L3 caches). If multiple cores are trying to request access
to the same cache line concurrently, requests are linearized
by the cache directory implemented by the caching agent
of the last-level cache [4]. The latency of acquiring a cache
line in an exclusive state grows linearly with the number of
cores requesting the cache line [4].

On modern machines, the transfer of a cache-line between
two cores takes 115-320 cycles, depending on how far away
the cache line is in the caching hierarchy from the access-
ing core [6, 43, 44, 64]. Atomicity of the updates is ensured
by temporarily “locking” the cache line to the core, i.e., if
a coherence request from another core arrives to the core
that locked the cache line, the request is delayed until the
line is unlocked. If the cache line is already present in the
first-level cache of the core, locking is fast as it is performed
locally by the cache (locking the cache line adds an overhead
of 11-30 cycles [6]). Hence, without contention, the main
overhead comes from transferring cache lines between indi-
vidual caches or between caches and memory. However, in
the case of contended accesses, the overheads of linearization
of requests from multiple cores dominate those of cache-line
transfers.
To illustrate the impact of synchronization on the hash

table’s performance, we conduct a simple experiment that
mimics cache-line access patterns typical for traditional lock-
based and lock-free synchronization schemes. In our experi-
ment, multiple threads access individual cache lines either
inside a critical section protected by a spinlock, or with
an atomic increment instruction (Figure 2). We utilize two
datasets aimed to represent two extremes of the hash table
size—small and large—and vary the skew parameter of the
Zipfian distribution from 0 (uniform) to 1.2 (at the skew value
of 1, roughly 90% of accesses touch 10% of cache lines). The
small hash table fits into the caching hierarchy of our ma-
chine, i.e., we allocate 32 MB for the hash table on a machine
that has 64 MB of last-level cache spread across two sockets.
The second dataset is 1 GB and is intended to emulate a
large hash table that fits in memory, but not in the caches of
the CPU. The experiment utilizes 64 logical threads of our
example dual-socket Intel Xeon Gold 6142 16-core Skylake
CPU.

In case of a large hash table, the majority of accesses fetch
the cache line from memory (the probability of contention—
and hence, the probability that the cache line is already
present in the last-level cache or in one of the private caches—
is extremely low). In the case of the small hash table, the
entire dataset is cached in the private L1 and L2 caches of
all CPUs and the two last-level caches of the two sockets. A
typical access fetches the cache-line from either the local or

the remote cache. In both cases (large and small hash tables),
the overheads of synchronization are dominated by the la-
tency of transferring the cache line to the first-level cache
of the core requesting the access (from 184 cycles from a
remote cache to 394 cycles from memory). A critical section
requires two atomic cache-line accesses: one to acquire and
one to release the lock; however, since during the second
access the cache-line is already in the modified state in the
local L1, the second access introduces only minor overhead
(the overhead of a spinlock and atomic increment differ by
only 31-95 cycles). We make the following observation:

On distributions with a small skew, the contention is
low. The overhead is dominated by coherence transfers
that fetch cache-lines from either memory or the caches
of other cores.

On a skewed distribution, the probability of accessing the
same cache line by multiple threads grows significantly. Con-
current accesses create contention, which forces coherence
requests from multiple cores to be queued by the directory.
On our 32-core (64 logical threads) dual-socket system, la-
tency reaches 16K cycles for atomic increment and 66K cycles
for a spinlock (this is consistent with papers that observe
scalability bottlenecks for workloads that contend for the
same cache line across multiple cores [4]).

On high skew, contention dominates overheads of cache-
line transfers.

Architecting for performance The above observations
shape the following design principles that are critical for
achieving peak hash table performance on modern hard-
ware:

• Minimal number of cache misses For both small
and large hash tables, the cost of a cache miss below
the L2 cache (i.e., a miss to either memory, local last-
level cache, or caches of remote cores) is prohibitive.
The hash table, therefore, has to avoid accessing un-
prefetched memory on the critical path.

• Minimal number ofmemory transactionsHash ta-
bles that do not fit in the caching hierarchy should treat
memory bandwidth as a limited resource. Additional
memory accesses can sharply degrade performance
(e.g., one additional access per hash table operation
can effectively reduce the throughput of the hash table
by half if the memory bandwidth is saturated). The
hash table has to be designed to minimize the number
of memory transactions through the choice of conflict
resolution policy, hash table organization, and data
structure layout.

• No contention On workloads with a high skew, the
overhead of contention dominates all others. To achieve
peak performance, hash tables should minimize or
avoid contention.

DRAMHiT: A Hash Table Architected for the Speed of DRAM EuroSys ’23, May 8–12, 2023, Rome, Italy

100

1000

10000

100000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
y
c
le

s
 p

e
r

o
p
e
ra

ti
o
n

Skew value

spinlock 32mb
atomic inc 32mb

spinlock 1gb
atomic inc 1gb

Figure 2. Synchronization overheads for 32 MB and 1 GB datasets

3 DRAMHiT Architecture
Our work, DRAMHiT, develops a new hash table that is
aimed at exploiting the performance capabilities of modern
memory subsystems. DRAMHiT utilizes the design princi-
ples that we articulated above. Specifically, it is designed to
avoid cache misses on the critical path, treat memory band-
width as a limited resource, and eliminate contention under
high skew.
Hashtable organization DRAMHiT implements the hash
table as a single contiguous array of 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 tuples and
relies on open addressing with linear probing for collision
resolution. Linear probing is one of the widely used algo-
rithms for collision resolution in a hash table. To store a
𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 tuple, the key is hashed using a hash function that
returns an index, i.e., 𝑖𝑛𝑑𝑒𝑥 = ℎ𝑎𝑠ℎ(𝑘𝑒𝑦). The index is used
as a candidate location for storing the tuple in the array. If the
candidate location is occupied, the linear probing algorithm
increments the index until it finds the first vacant position in
the linear sequence 𝑖𝑛𝑑𝑒𝑥 , 𝑖𝑛𝑑𝑒𝑥 +1, 𝑖𝑛𝑑𝑒𝑥 +2, etc., wrapping
around when the end of the array is reached.

Note that since the original hash of the key can produce an
index that is larger than the array size, we use the fastrange
function to ensure that the index is in the range [0, 𝑠𝑖𝑧𝑒) in
an approximately uniform manner [31]. Fastrange provides
a fast alternative to the modulo reduction, allowing us to
work with hash tables whose size is not limited to powers of
two.

Linear probing provides several attractive properties. First,
a combination of open addressing and linear probing allows
us to minimize the number of cache-line transactions on
the memory bus. Linear probing resolves hash conflicts by
accessing consecutive memory locations (in many cases, the
same cache line) in order to find an unoccupied hash table
slot. Our empirical observations show that on a fill factor
of 75-80%, lookup and insertion operations require only 1.3
cache line accesses per request on average (i.e., reprobes
that check consecutive memory locations access additional
cache-lines only 30% of the time). This is critical for reducing
pressure on the memory subsystem.
Second, simple conflict resolution and insertion logic al-

lows us to implement a synchronization scheme that requires
no atomic operations for reads and one atomic operation

for writes. As a result, DRAMHiT benefits from caching fre-
quently accessed elements on read-heavy workloads with a
high skew (i.e., concurrent read accesses from different cores
do not invalidate local copies cached in the “shared” state).

Operations DRAMHiT supports the following operations:
get(), put(), delete(), and upsert(). The get() operation takes a key
as an input and returns either a found value matching the key
or None. The put() operation takes the key and the value and
inserts the value into the hash table along with the key. If the
key already exists in the hash table, put() silently overwrites
it with the new value. The upsert() operation either inserts
a constant passed as an argument into the hash table or
updates the existing value by adding the constant. Finally,
the delete() operation takes a key as input and deletes the value
associated with the key if it is found in the hash table. We
implement deletion by marking the element as a tombstone.
Note that the delete operation does not free the slot of the
hash table array. The space is freed only when the hash table
is resized (we assume that an efficient resizing scheme can
be implemented similar to Growt [35]).

Atomicity To serialize concurrent accesses, DRAMHiT im-
plements two different protocols depending on whether the
key-value tuple fits in two machine words (i.e., 8 bytes each
on x86 64bit machines) or not. To implement insertion for
tuples that are smaller than 16 bytes, DRAMHiT relies on
a double-word compare-and-swap (cas) instruction. Concur-
rent updates are atomic due to the atomicity of the cas in-
struction. DRAMHiT implements a lookup operation as two
8-byte loads without any atomic operations. It may seem that
read can observe a key-value tuple from multiple concurrent
updates (i.e., a torn read). We ensure the linearizability of
reads with respect to concurrent updates by relying on the
fact that the read operation first reads the key to check if the
element of the hash table is empty or not and then the value.
If the read operation is interrupted by a concurrent update,
i.e., an update of an already existing value, the read observes
the most recent value. Since delete() operation does not free
the element of the hash table array but rather marks its key
as a tombstone, a concurrent read operation either observes
a tombstone (i.e., key not found) or returns the old value as
if read happens before deletion.
DRAMHiT uses two values from the key space to mark

empty and deleted keys (empty and tombstone). To restore the
key space, we use two dedicated memory locations that store
values corresponding to the empty and tombstone keys.

For the key-value tuples larger than 16 bytes, we imple-
ment a simple transactional protocol that ensures the atom-
icity of reads [33, 62]. We maintain a 32-bit version along
with each tuple. Any write operation increments the version
before and after the write to the tuple, i.e., when inserting a
new key or just updating the value. Reads rely on the fact
that an odd version marks an in-progress update and wait
for the version to become even before proceeding with the

EuroSys ’23, May 8–12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

read. Finally, to ensure that the read of multiple cache lines
is atomic, i.e., the key or the value are not changed with a
concurrent update, the read operation compares the version
before and after reading the element. If the version changes it
means that the element was changed by a concurrent update
and the read operation is retried.

3.1 Prefetch Engine

DRAMHiT is designed to avoid unprefetched memory ac-
cesses. To implement this design decision, we develop a
lightweight prefetch engine that issues a prefetch instruction
before accessing any element of the hash table. To overlap
pending prefetch accesses with the processing of requests,
we treat memory as an asynchronous medium.
Asynchronous interface In contrast to traditional hash ta-
bles that processes one request at a time, DRAMHiT exposes
an asynchronous interface typical for modern I/O devices,
e.g., network and NVMe adapters. The hash table interfaces
take a batch of requests and return a batch of responses. The
caller provides pre-allocated space to collect responses. The
hash table can return any number of responses between zero
and the size of a pre-allocated response batch.
Responses can be returned out-of-order due to different-

length reprobe chains. With every request, the hash table
takes a user-defined identifier which it returns along with
the response. This allows the application code to match re-
sponses with requests. For example, if the application code
has an array of keys and tries to look up values correspond-
ing to each key, it can submit the position of the key as an
identifier and then later use the same identifier to insert the
response into the appropriate location of the array. While
out-of-order completion of requests puts an additional bur-
den on software developers using our batch API interface,
we argue that the tradeoff is justified by the performance
benefits. The hash table provides a flush() function that forces
the hash table to complete all pending requests. Typically,
flush() is called only when the application reaches the end of
its dataset.
Prefetch engine To implement asynchronous request pro-
cessing, DRAMHiT maintains a thread-local first-in-first-out
queue of pending requests. When the request is picked from
a batch of submitted requests, the hash table computes the
hash of the key, determines the location in the hash table it
must access, issues a prefetch for that location, and adds the
request onto the queue of pending requests (Algorithm 1).We
implement the queue as a bounded-size producer-consumer
ring buffer. This allows us to avoid allocations on the critical
pass, as the element is inserted into the queue by advancing
the head pointer.

DRAMHiT accumulates PREFETCH_WINDOW requests in its
queue. This allows us to adjust for the latency of access
to memory or a remote cache. When PREFETCH_WINDOW re-
quests are accumulated on the queue, we have a guarantee
that the tail of the queue is already resident in the caches of

for item in batch do
queue[head].item = item;
h = hash(item->key);
queue[head].index = fastrange(h, htable.size);
prefetch(&htable[index]);

end
if queue reaches PREFETCH_WINDOW then

for elem in queue do
ret = insert(elem);
if ret == reprobe then

queue[head] = elem.index++;
prefetch(&htable[queue[head].index]);

end
end

end
Algorithm 1: Prefetch logic for the insertion operation

T1

T2

A1

A2

A3

A4 Fast messaging

Partitions

#0

#1

#2

#3

#5

#4

insertm={insert}

lookup

Figure 3. DRAMHiT architecture with four applications (𝐴𝑖) and
two delegation threads (𝑇𝑖) each managing three partitions.

the CPU. DRAMHiT then starts processing elements from
the queue by dequeuing the oldest element from the tail of
the queue and performing the hash table operation on it, i.e.,
looking for an empty location in the hash table array. If the
operation triggers a reprobe that spills into a different cache
line, the request is updatedwith the location of the next cache
line and is pushed back on the queue, while the prefetch is
issued for this next cache line. The operation returns when
either the queue size drops below PREFETCH_WINDOW (no re-
quests are ready) or, in the case of the lookup operation, the
response batch pre-allocated by the application is full.

3.2 Partitioning for High Skew

Under high skew, the cost of linearizing conflicting cache-
line accesses becomes dominant. To eliminate contention, we
implement DRAMHiT-P, a partitioned version of DRAMHiT
that utilizes an efficient delegation scheme to relay the pro-
cessing of update requests to a dedicated set of threads. In
contrast to traditional shared-memory designs in which all
threads access the hash table and synchronize access via syn-
chronization primitives, DRAMHiT-P implements the hash
table as a set of partitions (Figure 3). Each partition is respon-
sible for storing a non-overlapping part of the key space. A

DRAMHiT: A Hash Table Architected for the Speed of DRAM EuroSys ’23, May 8–12, 2023, Rome, Italy

read operation can be executed by any of the threads, i.e.,
any thread can access any partition to perform a lookup.
Write operations, however, are delegated to threads assigned
to provide exclusive update access for each partition.
To implement delegation, we rely on explicit message

passing (Section 3.3). Each delegation thread polls for client
requests and executes them on the partition assigned to it.
Operations Efficient implementation of a partitioned hash
table requires some changes to the hash table interface mo-
tivated by the goal of minimizing the number of messages
between threads. Specifically, in DRAMHiT-P, update oper-
ations that are issued via message queues do not return a
result. This allows us to avoid implementing bi-directional
communication and waiting for the completion of update
operations. If the key already exists in the hash table, put()
silently overwrites it with the new value. The insertion may
fail only if the destination partition is full. We detect that
the partition is full before insertion is attempted. Since each
partition is updated by a single thread, this thread maintains
a counter that tracks the number of elements in the partition.
Since all updates on a partition are performed by a single
“writer” thread the counter can be maintained locally with-
out incurring synchronization overheads. If the partition is
full, the thread sets a flag denying further insertions. Before
inserting a key, each “producer” thread checks the flag. In a
stable state, while the partition is not full, the flag is cached
in the shared state on all producer cores. Hence the check is
an access to the local L1 cache.

3.3 Delegation

Several unique requirements shape the design of a delegation
scheme in the context of a hash table. First, the delegation
mechanism is required to scale to a large number of server
threads, e.g., 32-64, to support a large number of “consumer”
threads required on the write-heavy workloads (i.e., k-mer
counting that we use as a case study in Section 4). Second,
delegation should provide overhead of only a few tens of
cycles in order to compete with the speed of the cache co-
herence protocol.
Most delegation schemes are designed for a small num-

ber of server threads—in a typical case, server threads ex-
ecute the code of small critical sections, hence only small
amount of CPU time is needed [55]. Moreover, typical del-
egation schemes are designed to compete with traditional
synchronization primitives under high contention. For exam-
ple, when applied to a hash table, a recent delegation scheme,
FFWD, outperforms traditional spinlocks only on hash tables
that have less than 64 buckets and under contention from
120 cores, i.e., only under extreme contention [55].
Message queue DRAMHiT-P chooses low-overhead mes-
sage passing as the foundation for its delegation mecha-
nism. Specifically, DRAMHiT-P utilizes the ideas of sec-
tion queues[22, 47], but combines them with explicit queue
flushing. Section queues improve the performance of the

Current
cache line

���

Next
cache line

���

���

Queue #1

Queue #2

Queue #N

Queues metadata
(per-core)

Next message

Cache-line

Figure 4. Producer-side queues and metadata

Lamport’s producer-consumer queue [28] that implements
lock-free communication but require checking of a shared
producer-consumer pointer on every message, which results
in expensive cross-core cache-line transactions. A section
queue implements the queue as a ring-buffer of messages
split into sections. A pair of pointers is shared between the
consumer and the producer similar to the Lamport’s queue,
but the pointers are only updated when the producer or the
consumer reaches the end of a section.
When the end of the section is reached, the producer or

consumer checks the shared pointer to confirm if the next
section is available (since the shared pointer is updated on the
other side, this can result in a remote cache line access, so we
prefetch the shared pointer when the queue approaches the
end of a section). If the section is not available, the producer
spins on the pointer.
Section queues allow us to avoid both the overheads of

backtracking [67] and producer-consumer deadlocks. Com-
pared to the queues that implement adaptive backtracking,
e.g., BQueue [67], which uses a timeout before re-checking
the availability of the queue element, the update to the
pointer is detected immediately through a cache-coherence
update, hence there is no need for an adaptive timeout. By
choosing a large section, one can amortize the cost of ac-
cesses to shared pointers at the cost of increased communi-
cation latency (the messages are not reaching the other end
until the entire section is full).

Scaling Scaling the number of communication queues is
challenging in the face of a limited L1 cache budget. Modern
Intel CPUs come with per-core 32 KB L1 caches (or 16 KB per
logical thread). If a producer thread communicates with up to
64 consumers, then it leaves 256 bytes (or 4 cache lines) per
queue. While in practice, a typical communication involves
32-63 queues, some fraction of the L1 cache is occupied by
frequently accessed variables.
L1 cache residency is critical for the performance of the

delegation mechanism, which aims for a communication
overhead of a few dozen cycles (i.e., a miss from L1 into
L2 adds a penalty of 10 cycles [64]). Efficient queue access
requires that at least two cache lines (current and next) are
resident in the L1 cache. With a budget of only 1-2 cache
lines per queue, the queue has to be carefully designed to
pack queue metadata into the minimal number of cache lines.

EuroSys ’23, May 8–12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

1 constexpr std::array<__mmask8, KV_PER_CACHE_LINE>
2 key_cmp_masks = {
3 KEY3 | KEY2 | KEY1 | KEY0, // cidx: 0; all key comparisons valid
4 KEY3 | KEY2 | KEY1, // cidx: 1; only last three comparisons valid
5 KEY3 | KEY2, // cidx: 2; only last two comparisons valid
6 KEY3, // cidx: 3; only last comparison valid
7 };
8 auto key_cmp = [&key_cmp_masks](__m512i cacheline,
9 __m512i key_mask, size_t cidx) {
10 __mmask8 cmp = _mm512_cmpeq_epu64_mask(cacheline, key_mask);
11 // zmm registers are compared as 8 uint64_t
12 // mask irrelevant results before returning
13 return cmp & key_cmp_masks[cidx];
14 };
15
16 const size_t cidx = idx & (KV_PER_CACHE_LINE−1);
17 __m512i cacheline = load_cacheline(cidx);
18 // load a vector of the key in all 4 positions
19 __m512i key_mask = load_key_mask();
20 __mmask8 eq_cmp = key_cmp(cacheline, key_mask, cidx);
21 // compute a mask for copying the key into an empty slot
22 // will be 0 if eq_cmp != 0 (key already exists in the cacheline)
23 __mmask16 copy_mask = key_copy_mask(cacheline, eq_cmp, cidx);
24 copy_key(cacheline, key_mask, static_cast<__mmask8>(copy_mask));
25 // write the cacheline back; just the KV pair that was modified
26 __mmask8 kv_mask = key_mask | val_mask;
27 store_cacheline(cacheline, kv_mask);
28 // prepare for possible reprobe
29 ...

Listing 1. Vectorized insertion

We carefully design DRAMHiT-P’s delegation mechanism
to minimize the number of cache lines per queue (Figure 4).
We group the metadata of multiple queues (i.e., a pointer
into the data area, and size of the queue) that are accessed by
one thread together in a minimal number of cache lines. The
data area is separate and is accessible through a metadata
pointer. We maintain residency of two cache lines for the
data area, which allows us to fit one queue in 2.5 cache lines.
L1 residency Consumer threads can control the ordering
of queue accesses, e.g., round-robin. Consumer prefetches
the next queue before trying to access it. Specifically, we
prefetch both the queue metadata and the actual data in the
queue ring. Producers access the queues in a random order
depending on the distribution of keys and their mapping to
hash table partitions. A cache-friendly queue organization
allows us to keep critical queue data structures in the L1
cache. We prefetch only the next line of the queue data when
we approach the end of the current cache-line and a shared
section pointer when we approach the end of the section.

3.4 Vectorization

To explore the benefits of SIMD instructions from the
AVX512 instruction set, we develop an SIMD version of
the DRAMHiT-P hash table. SIMD instructions can oper-
ate on 512 bits of data in parallel hence reducing the number

of iterations in the conflict resolution loop. Moreover, the
support for conditional operations—specifically, conditional
load, store, comparison, and arithmetic instructions provided
by the AVX instruction set—allow us to implement hash table
operations without conditional branches.
Intel SIMD extensions do not support atomic operations

like compare-and-swap. We utilize SIMD instructions only in
a partitioned version of the hash table in which each partition
is updated by a single thread, hence eliminating the need for
concurrent updates. We further rely on empirical evidence
that aligned 512-bit read accesses remain atomic in face of
concurrent writes and hence avoid torn reads [54].
AVX instructions treat the 512-bit register as a vector

of eight 8-byte values and use a mask that selects which
elements of the vector will be affected by the operation (List-
ing 1). We create a collection of masks that allow us to select
which elements of the cache-line will be affected by the op-
eration (Listing 1, lines 2–6). For example, the second entry
(line 4) allows us to operate on three out of four keys.

To implement a branchless version of the insertion oper-
ation, we first compute the position of the key within the
cache-line, cidx (line 16). We use the position index (0-3) to
select one of the masks above, hence operating only on a
subset of the cache-line. We then load the cache-line con-
taining the key and value pointed by the hash function into
a 512-bit register (line 17). To compare the same key against
every element of the vector, we load it into another 512 bit
register at four different positions that match the position
of the keys in memory (one cache line can hold four key-
value pairs, line 19). To illustrate the AVX programming tech-
niques, we provide the code for the key_cmp() function (lines 8–
14). The function first compares two 512-bit values, cacheline
and key_mask with the vectorized _mm512_cmpeq_epu64_mask()

instruction (in most cases we utilize compiler-provided in-
trinsics). After performing the parallel comparison, we select
the relevant result from the 8-bit register by using the key’s
position in the cache line, cidx (line 13).
We then use a conditional copy operation to copy the

key into the cache-line, but only if the previous comparison
was true (lines 23–24). Similarly, we conditionally store the
cacheline back into the hash table. Note, in the regular x86
instruction set, conditional move instructions operate only
on registers, hence providing no way to conditionally store
the value back to memory. The AVX instruction set, however,
provides support for conditional stores. If the mask is false,
no memory transaction is generated.

To implement conditional reprobe when none of the keys
in the cache-line matched the requested key, we implement
similar code that relies on the conditional move instruction
to update the queue pointer, hence inserting the new element
back into the queue or leaving it unupdated. Similarly, to
implement conditional prefetch, we either increment the
address prefetching the next cache line, or prefetch the same

DRAMHiT: A Hash Table Architected for the Speed of DRAM EuroSys ’23, May 8–12, 2023, Rome, Italy

15

20

25

30

35

40

1
-1

2
-2

3
-3

4
-4

5
-5

6
-6

7
-7

8
-8

9
-9

1
0

-1
0

1
1

-1
1

1
2

-1
2

1
3

-1
3

1
4

-1
4

1
5

-1
5

1
6

-1
6

1
7

-1
7

1
8

-1
8

1
9

-1
9

2
0

-2
0

2
1

-2
1

2
2

-2
2

2
3

-2
3

2
4

-2
4

2
5

-2
5

2
6

-2
6

2
7

-2
7

2
8

-2
8

2
9

-2
9

3
0

-3
0

3
1

-3
1

3
2

-3
2

O
v
e
rh

e
a
d
 (

c
y
c
le

s
/m

s
g
)

Number of producers/consumers

cycles/msg

Figure 5. Latency of delegation (Intel)

cache-line again (since the cache-line is already cached, the
prefetch does not generate a memory transaction).

4 Evaluation
We conduct all experiments in the CloudLab network testbed [53]
and evaluate DRAMHiT on Intel and AMD architectures. In-
tel experiments utilize CloudLab c6420 servers configured
with two Intel XeonGold 6142 16-core Skylake CPUs running
at 2.6 GHz with 384GB of memory. AMD experiments utilize
CloudLab r6525 servers equipped with two AMD EPYC 7543
32-coreMilan CPUs running at 2.8 GHzwith 256GBmemory.
Both systems have all memory channels populated (six chan-
nels per socket on Intel with DDR4-2666MT/s and eight
channels per socket on AMD with DDR4-3200MT/s). All
systems run 64-bit Ubuntu 20.04 with a stock kernel (turbo-
boost, CPU idle states, and frequency scaling are disabled to
reduce the variance in benchmarks).

4.1 Delegation

We first evaluate the overheads of our queue-based delega-
tion mechanism. We execute a synthetic experiment that
communicates between a group of threads (Figure 5). Each
producer communicates with all consumers by repeatedly
sending 16-byte messages to each consumer in a round-robin
fashion. Consumers poll for messages and read the received
value. Each producer sends 64 million messages. We vary
the number of producers and consumers from 1 to 32. On
average, it takes 22-37 cycles to send one message. The cost
remains constant even when messages cross the boundary
of a socket or when we scale the number of queues.

4.2 Performance on Uniformly Distributed Keys

To analyze the impact of our design ideas and optimiza-
tions on the performance of the hash table, we compare
our hash tables DRAMHiT, DRAMHiT-P, and DRAMHiT-P-
SIMD (an SIMD version of DRAMHiT-P) against Folklore.
According to a recent study [35], Folklore is the fastest con-
current hash table that outperforms the closest competitors,
i.e., Junction [51], TBB [49], cuckoo [45], Facebook folly [16],
RCU [37], shunhash [58], hopscotch [20], and leahash [29].
For example, Folklore outperforms the closest competitor
shunhash [58] bymore than 30% for both insertions and finds
on a uniform distribution of 108 8-byte keys and values. In

many ways, our work uses the ideas of Folklore as a founda-
tion for performance. DRAMHiT and Folklore share the same
open addressing layout, linear probing as their conflict reso-
lution mechanism, and a CAS-based synchronization scheme
that avoids atomic instructions on the read path. DRAMHiT
and DRAMHiT-P extend Folklore with asynchronous request
completion, batching, delegation, and vectorized operations.

We execute our experiments on the hash table with 8-byte
keys and 8-byte values. In each test, we create two hash
tables: small and large. The small hash table occupies 16MB
of memory (1 million elements), and the large is 16GB (1
billion elements). The size of the small hash table is chosen
to fit into the caching hierarchy of a single socket on our
Intel server. We rely on a zipf generator with a skew of
0 to generate a uniform distribution of keys. We populate
the hash table, so it remains 75% full (the performance of
hash tables that rely on open addressing degrades sharply
at higher fill factors). CRC32 is used as the hash function.
We then vary the number of logical CPU threads involved
in the test from 1 to 64 (maximum on the Intel machine).
In our experiments, we use a batch size of 16 requests, and
uniformly distribute execution threads between sockets—
e.g., in a test with two threads, the threads run on different
NUMA nodes. Finally, we split the memory of the hash table
in half, and allocate each half on a different NUMA node to
ensure that the tests utilize all available memory channels.

Insertions We first perform a basic insertion test by insert-
ing 0.75 million (small hash table) and 805 million (large hash
table) unique uniformly-distributed keys into an empty hash
table such that it becomes 75% full (Figure 6a and Figure 6b).
We run DRAMHiT-P and DRAMHiT-P-SIMD with a 1-to-3
proportion between producers and consumers, e.g., 16 pro-
ducers and 48 consumers for a 64-core configuration (we
empirically found this configuration to result in the highest
throughput).
With one memory miss on the insertion path, Folklore

remains limited to the maximum of 417Mops or 50% of the
theoretical bandwidth on a large hash table. Leveraging the
prefetch engine, DRAMHiT comes close to saturating the
memory bandwidth with 792Mops. Our Intel system sup-
ports the maximum bandwidth of 1,192M cache-line transac-
tions per second per socket (2,384M for a two-socket system)
on a workload of alternating reads and writes (Table 1). The
hash table insertion requires two cache line transactions—
one to read the cache line and one to write it back. However,
on average, a large hash table requires 1.3 cache line reads
due to conflicts. Additionally, every read that accesses the
memory of a remote NUMA node, i.e., half of the reads on av-
erage, results in a write-back to clear the directory bits [23].
Hence, an average insertion requires 1.3 read- and 1.65 write-
cache-line transactions, limiting the theoretical throughput
to 808Mops (we confirm the number of transactions em-
pirically with the Intel VTune performance analysis tool).

EuroSys ’23, May 8–12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

Moreover, DRAMHiT comes close to saturating memory
bandwidth with only 32 cores, which allows for the possibil-
ity of doubling the number of memory channels, and hence
doubling the throughput of the hash table. On a uniform
distribution, neither DRAMHiT-P nor DRAMHiT-P-SIMD
can benefit from partitioning (contention is low), but pay the
price of delegation. DRAMHiT-P achieves a throughput of
671Mops. DRAMHiT-P-SIMD is slightly slower at 667Mops.

On the small hash table, Folklore is limited by the latency
of cache misses to remote caches (i.e., private L2 caches of
other cores that most recently accessed the hash table entry
and L3). Folklore reaches 441Mops. DRAMHiT can fully ben-
efit from prefetching capabilities and achieves an insertion
throughput of 1180Mops. DRAMHiT-P further leverages the
locality of insertions, but as it loses a fraction of the CPU
cores to producer threads, it cannot reach the performance of
DRAMHiT, staying at a maximum throughput of 975Mops
(DRAMHiT-P-SIMD reaches 885Mops).

Lookups For read-only tests, we first pre-initialize a hash
table with uniformly distributed keys and then perform the
same number of get() operations (Figure 6a and Figure 6b).
In general, reads are faster than insertions, as they require a
smaller number of coherence operations (on Intel machines,
a read from a remote NUMA memory triggers a write to
update the directory information). Hence, on average, a read
requires 1.3 read transactions (0.3 due to reprobes) and 0.65
write transactions (half of the 1.3 read transactions trigger
write-backs to remote NUMA memory). If we use an em-
pirical MLC throughput measurement for a composition of
2 random reads and 1 random write (Table 1), the maxi-
mum achievable throughput is 1.3Mops. On a large hash
table, Folklore remains bottlenecked on accesses to memory,
achieving only 451Mops. Both DRAMHiT and DRAMHiT-P
benefit from prefetching and achieve 973Mops and 951Mops,
respectively, on 64 cores. DRAMHiT-P-SIMD is slightly faster
at 1008Mops.

On a small hash table, Folklore benefits from a lean lookup
path as most of the hash table is cached in the last level cache
of each socket (1616Mops). DRAMHiT pays the price of the
prefetch engine overhead (1513Mops), and DRAMHiT-P,
the additional overhead of partition lookups (1224Mops).
DRAMHiT-P-SIMD is marginally faster (1270Mops).

Impact of individual optimizations Individual optimiza-
tions, i.e., prefetching, partitioning, and SIMD (vectoriza-
tion), have different impacts depending on the operation,
hash table size, and key distribution. Compared to Folklore,
DRAMHiT, which implements a prefetching optimization,
achieves 89-230% improvement on all configurations besides
reads of a small hash table on which the overhead of the
prefetch engine degrades the performance by 2-7%. A combi-
nation of partitioning and prefetch is only helpful on write-
dominated workloads with high skew (5-163% improvement
over prefetch) but degrades performance in all other cases.

Finally, SIMD optimizations improve the performance of the
partitioned hash table by only a few cycles on large hash
tables (1-10 cycles or 1-11% improvement over DRAMHiT-P)
but generally degrade performance on small ones (1-10%).
Impact of cache pollution To measure how performance
degrades if a hash table competes for a fraction of the cache
with the application itself, we design an experiment in which,
after every hash table operation, we pollute the cache by
prefetching several random cache lines from the memory of
a large array (Figure 6c). We vary the number of cache lines
prefetched from 0 to 512 and run our experiment on a large
hash table with a uniform distribution of keys on 64 threads.
Both AMD and Intel machines have 32 KB of L1 data cache
(512 cache lines) that is shared between two hyperthreads.

Performance of bothDRAMHiT andDRAMHiT-P degrades
gracefully until it blends with Folklore when two hyper-
threads pollute the entire cache by prefetching 256 cache
lines each.
Impact of batching To measure how the performance of
the hash tables degrades if an application cannot accumulate
a batch of requests, we vary the batch sizes and measure the
insertion and find throughput (Figure 7). We vary the batch
size from 1 to 16 in power-of-two increments and run our
experiment on a large hash table with a uniform distribution
of keys on 64 threads. Performance of both DRAMHiT and
DRAMHiT-P stays almost constant across various batch sizes
for the insert operation.
For finds, a batch size of 4 and 8 yield slightly better

throughput for DRAMHiT and DRAMHiT-P, respectively.
We observe only a difference of fewer than 10 cycles per
operation across all batch sizes.
Mixed insertions and lookups To measure the perfor-
mance of our hash tables on a mix of insertions and lookups,
we perform an experiment that uses 64 threads on both
uniform and zipfian (skew of 1.09) distributions (Figure 8c).
We first pre-initialize the hash table with the correspond-
ing distribution and then measure the throughput of mixed
insertions and finds by varying the read probability (𝑝 = 0
corresponds to all writes, and 𝑝 = 1 corresponds to all reads).
The performance of all hash tables predictably goes up as
the fraction of reads increases.
4.3 Performance on Skewed Distributions

To measure how DRAMHiT performs on distributions in
which some fraction of the keys are accessed more frequently
compared to the rest, we run a test in which we use 64 logical
cores and vary the 𝑡ℎ𝑒𝑡𝑎 parameter of the Zipf distribution
from 0 to 1.09. A 𝑡ℎ𝑒𝑡𝑎 of 0 results in a uniform distribution.
With a 𝑡ℎ𝑒𝑡𝑎 of 1.09, roughly 10% of keys are accessed by
90% of requests.
Insertions On high skews (1.09), insertions suffer from the
overheads of coherence protocol contention (Figure 8a and
Figure 8b). On both small and large hash tables, Folklore and
DRAMHiT perform poorly, achieving only 132-143Mops.

DRAMHiT: A Hash Table Architected for the Speed of DRAM EuroSys ’23, May 8–12, 2023, Rome, Italy

Folklore DRAMHiT DRAMHiT-P DRAMHiT-P-SIMD

0

250

500

750

1000

1250

10 20 30 40 50 60

In
s
e
rt

io
n
s
 (

M
o
p
s
)

Number of threads

0

250

500

750

1000

1250

1500

1750

10 20 30 40 50 60

F
in

d
s
 (

M
o
p
s
)

Number of threads

(a) Uniform insertions and lookups (small)

0

250

500

750

1000

10 20 30 40 50 60

In
s
e
rt

io
n
s
 (

M
o
p
s
)

Number of threads

0

250

500

750

1000

1250

10 20 30 40 50 60

F
in

d
s
 (

M
o
p
s
)

Number of threads

(b) Uniform insertions and lookups (large)

0

200

400

600

800

0 100 200 300 400 500

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

pollutions / op

0

250

500

750

1000

0 100 200 300 400 500

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

pollutions / op

(c) Impact of cache pollution (uniform, large)

Figure 6. Lookups and insertions on uniform distribution

500

1000

2 4 6 8 10 12 14 16

In
s
e

rt
io

n
 (

M
o

p
s
)

500

1000

1500

2 4 6 8 10 12 14 16

F
in

d
s
 (

M
o

p
s
)

Batch length

Figure 7. Impact of a batch size (uniform, large)

DRAMHiT-P, on the other hand, can benefit from delegation.
On a skew of 1.09, it achieves 245Mops on large and 351Mops
on small hash tables. SIMD optimizations provide a small
improvement over DRAMHiT-P (3-23%).
Lookups DRAMHiT, DRAMHiT-P, and Folklore implement
lookups without atomic operations. Hence, frequently ac-
cessed keys are cached locally by the CPU and benefit from
the temporal cache locality amplified by high skew (Figure 8a
and Figure 8b). On the small hash table, Folklore outperforms
the two other hash tables since frequently accessed keys
fit in L1 and L2 caches of the core (on our Intel machine,
L2 is 1MB). By avoiding the overhead of the prefetch en-
gine, Folklore achieves 4059Mops, compared to DRAMHiT
(2919Mops) and DRAMHiT-P (2919Mops). On a large hash
table, DRAMHiT (2820Mops) and DRAMHiT-P (2133Mops)
still benefit from the prefetch engine, which allows them
to prefetch cache lines that do not fit into the caches of the
CPU (even 10% of the dataset is 1.6 GB). Without prefetching,
Folklore is limited to 1499Mops.

4.4 Latency

With aggressive batching, prefetching, and out-of-order com-
pletion, DRAMHiT andDRAMHiT-P trade latency for through-
put. To measure how our optimizations affect the latency
of hash table operations, we collect completion latency for
each request and plot a latency CDF (Figure 9). On insertions,

DRAMHiT-P returns immediately after submitting the re-
quest to the queue. Hence, it has the lowest insertion latency
across all hash tables (90% of inserts complete within 52 cy-
cles). Predictably, software prefetching pushes the latency of
insertions and lookups in DRAMHiT to several thousands of
cycles (90% of requests complete within 9090 cycles), which
is much higher compared to 594 cycles for Folklore. While
higher latency can hurt the performance of latency-sensitive
applications, we argue that for a large class of throughput-
demanding applications, the higher latency has a smaller
impact, especially compared to the additional throughput
provided by DRAMHiT and DRAMHiT-P.

4.5 Alternative CPU Architecture: AMD

To validate that our optimizations can be applied to different
CPU architectures, we perform a collection of experiments
on AMD servers. Compared to Intel, AMD EPYC CPUs sup-
port up to eight memory channels at the speed of 3200MT/s
and have a larger caching hierarchy with L1 data cache of
32 KB, L2 cache of 512 KB, and a total of 256MB of L3. A
single AMD socket is comprised of 8 individual core com-
plexes (each with 4 cores). Each core complex has a private
32MB L3, of which 8MB are shared across 4 cores of the
complex, and 24MB are used as 6MB L3 slices private to
each core. Despite the fact that the theoretical throughput of
a single AMD socket can reach 204.8 GB/s, in practice, our
system achieves 167GB/s for random reads and 144GB/s for
a composition of one random read and one write.

We perform a collection of experiments similar to the ones
above performed on the Intel system: reads and writes on
a uniform and skewed distribution for both small and large
hash tables (Figures 10 and 11).

AnAMD system performs similar to Intel (until 32 threads)
but achieves higher throughput in all the tests. One interest-
ing anomaly is that on large datasets, AMDmachines achieve
peak bandwidth on 32 threads that are uniformly distributed
across all core complexes. Performance drops sharply on
larger core counts. While we were not able to investigate

EuroSys ’23, May 8–12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

Folklore DRAMHiT DRAMHiT-P DRAMHiT-P-SIMD

0

500

1000

1500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

In
s
e
rt

io
n
s
 (

M
o
p
s
)

Skew

1200

2400

3600

4800

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

F
in

d
s
 (

M
o
p
s
)

Skew

(a) Zipfian insertions and finds (small)

0

500

1000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

In
s
e
rt

io
n
s
 (

M
o
p
s
)

Skew

0

1200

2400

3600

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

F
in

d
s
 (

M
o
p
s
)

Skew

(b) Zipfian insertions and finds (large)

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Read probability

0

1000

2000

3000

4000

0 0.2 0.4 0.6 0.8 1

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Read probability

(c) Mixed find/insertion tests

Figure 8. Finds and insertions on skewed distribution and mixed read/write tests

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

10 100 1000 10000 100000

C
u
m

u
la

ti
v
e
 p

ro
p
o
rt

io
n

Latency in Cycles

Folklore insert
Folklore find

DRAMHiT insert
DRAMHiT find

DRAMHiT-P insert
DRAMHiT-P find

Figure 9. Cumulative latency distribution

the performance anomaly, the sharp drop in performance
suggests a bottleneck in the cache-coherence subsystem (per-
formance of a partitioned DRAMHiT-P continues to grow
as it utilizes less coherence traffic).

4.6 Macrobenchmarks

K-mer counting K-mer counting, i.e., counting of substrings
of length k, is a central piece in a variety of genomic algo-
rithms ranging from genome assembly to error correction
in sequenced genome reads. Specifically, k-mer counting is
widely used by meta-genomic applications [11, 26, 36, 46]
and can be done with a hash table in which k-mers are used
as keys, and values maintain the count. Counting relies on
the “upsert” operation that either inserts a new key into the
hash table, or increments a value associated with the key.
We evaluate our hash tables on the chromosomes of the

Drosophila melanogaster, a 20GB dataset that contains 7.8 gi-
gabases (Gbases), and Fragaria vesca f. semperflorens, a 15 GB
dataset that contains 4.8 Gbases. We then count k-mers for
different values of k, ranging it from 4 to 32 (Figure 12). We
compare with CHTKC [66], a recent kmer counter that uses a
lock-free hash table with chaining that showcases better per-
formance compared to other state-of-the-art kmer counters,
Jellyfish [36] and KMC3 [26]. We run the optimized version
of CHTKC (chtkco) with 64 threads and 92GB of memory.
To make a fair comparison, we disable the canonicalization

of kmers in CHTKC as we do not perform that operation
in our benchmark. CHTKC takes 40 seconds to count the
kmers (K=32) for D.melanogaster and 51 seconds for F.vesca.
As kmers from sequencing data often have zipfian distribu-
tion [57], DRAMHiT-P performs considerably better than
other hash tables on both datasets. We empirically confirmed
the distribution by measuring the frequencies of kmers from
the two datasets, where the 25 most accessed kmers occupy
50-86% of the dataset.
Complexity of asynchronous interface Asynchronous
submission and out-of-order completion of requests put ad-
ditional engineering complexity on developers of applica-
tions that use DRAMHiT. Specifically, our macrobenchmarks
submit upsertion requests in batches of 16 requests, which
relies on a local array to accumulate the batch (5-10 lines of
code). Arguably, the complexity of using DRAMHiT is low.
DRAMHiT-P, however, requires re-structuring the applica-
tion as a collection of threads, some of which are designated
to perform update requests.

5 Related work
Parallel hash tables Herlihy and Shavit provide an in-
depth survey of concurrent hash tables [19]. Unfortunately,
many concurrent hash table designs rely on expensive syn-
chronization, e.g., similar to early concurrent hash tables [9,
10, 21, 27], a widely-used TBB hash table relies on fine-
grained locks around each bucket chain [49].

To reduce the overhead of synchronization, Michael [40]
suggested the use of a fixed-size array of lock-free lists to
handle collisions. Greenwald developed a lock-free closed
addressing hash table centered around double-word compare
and swap (DCAS) [17]. DCAS required multiple CAS opera-
tions and hence introduced prohibitive overheads [34]. Gao
et al. proposed a lock-free hash table with open addressing
and support for resizing [13]. Li et al. implemented a concur-
rent implementation based on per-bucket locks for the hash
table that relies on cuckoo-hashing [32]. While improving

DRAMHiT: A Hash Table Architected for the Speed of DRAM EuroSys ’23, May 8–12, 2023, Rome, Italy

0

500

1000

1500

2000

20 40 60 80 100 120

In
s
e
rt

io
n
s
 (

M
o
p
s
)

Number of threads

0

1500

3000

4500

20 40 60 80 100 120

F
in

d
s
 (

M
o
p
s
)

Number of threads

(a) Uniform distribution (AMD, small)

Folklore DRAMHiT DRAMHiT-P

0

250

500

750

1000

1250

20 40 60 80 100 120

In
s
e
rt

io
n
s
 (

M
o
p
s
)

Number of threads

0

250

500

750

1000

1250

20 40 60 80 100 120

F
in

d
s
 (

M
o
p
s
)

Number of threads

(b) Uniform distribution (AMD, large)

0

500

1000

1500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

In
s
e
rt

io
n
s
 (

M
o
p
s
)

Skew

0

1200

2400

3600

4800

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

F
in

d
s
 (

M
o
p
s
)

Skew

(c) Zipfian distribution (AMD, small)

Figure 10. Lookups and insertions on AMD CPUs

0

500

1000

1500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

In
s
e
rt

io
n
s
 (

M
o
p
s
)

Skew

Folklore DRAMHiT DRAMHiT-P

0

1200

2400

3600

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

F
in

d
s
 (

M
o
p
s
)

Skew

Figure 11. Lookups and insertions on zipfian distribution (AMD,
large)

0

250

500

750

1000

1250

1500

0 5 10 15 20 25 30 35

M
o
p
s

K

Chtkc-o
Folklore

DRAMHiT
DRAMHiT-P

(a) K throughput (D.melanogaster)

0

250

500

750

1000

1250

1500

0 5 10 15 20 25 30 35

M
o
p
s

K

(b) K throughput (F.vesca f. semperflorens)

Figure 12. Insertions throughput on K-mer datasets

over fine-grained locking, lock-free techniques only partially
address the overheads of synchronization due to expensive
cache line transfers and directory linearization. Our work
addresses these overheads with prefetching and partitioning.

Shun and Blelloch introduce the notion of phase concurrent
hash tables that allow the client to use either the read or
write operation within a globally synchronized phase [58].
Arguably, our techniques can be used to benefit from efficient
reads and writes during each phase.
Relativistic hash tables suggest the use of the read-copy

update (RCU) synchronization primitive [48] that requires
no synchronization for read operations [50, 61, 68]. Natu-
rally, relativistic hash tables perform well on read-dominated
workloads, but degrade quickly with an increasing frac-
tion of updates. Leveraging a simple linearization protocol,
DRAMHiT avoids writes and atomic operations for reads
similar to relativistic designs.
Maier et al. implement and evaluate Folklore, an open-

addressing hash table that requires only one atomic oper-
ation on the insertion path and no atomic primitives for
lookup [35]. Detailed comparison demonstrates that their
hash table achieves excellent performance—roughly 360 mil-
lion insertions and 650 million lookups per second on a
two-socket 64-thread machine with keys from a uniform dis-
tribution [35] (this is consistent with our experiments). They
further extend naive Folklore implementation with support
for resizing, Growt [35].

Hopscotch hashing implements a cache-friendly algorithm
for open addressing [20]. While Hopscotch helps to avoid
cache misses due to reprobing, our approach argues for ex-
plicit prefetching to make sure the hash table does not per-
form accesses to an unprefetched memory. LeaHash relies
on hashing with chaining but suffers from repetitive mem-
ory misses when traversing the chain [29]. While explicit
prefetching can be applied to chaining, traversing the chain
introduces additional memory transactions, and therefore,
will bottleneck on the throughput provided by the mem-
ory subsystem. Bolt develops a concurrent version of Robin
Hood hashing [24]. Due to predictable reprobe distance, Bolt
outperforms Growt but only on a relatively small 106 keys
hash table that almost fits in the last level cache of the CPU

EuroSys ’23, May 8–12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

and on a load factor of 50% (this is critical as the fast path in
Bolt relies on the absence of reprobes) [24].

Delegation and combining To avoid cache coherence and
synchronization overheads, delegation schemes designate
one thread, a server or a combiner, that executes the code
of the critical section on behalf of all other client threads.
Flat combining is a dynamic delegation scheme in which
any thread tries to acquire a basic spinlock to become a
temporary combiner [18]. Fast-flyweight delegation (FFWD)
provides an efficient NUMA-aware, static delegation scheme
which is used to implement a hash table [55]. While FFWD
(and delegation schemes in general) eliminates synchroniza-
tion overheads and suggests a cache-coherence optimized
communication protocol, the performance of one server core
does not match the throughput of a multi-threaded system.
FFWD outperforms traditional locking methods only when
contention is extreme [55]. DRAMHiT-P relies on a hybrid
technique that combines generalized, multi-server delega-
tion with efficient cross-core communication mechanisms.
In the past, CPHash explored partitioned hash table de-

sign with the goal of avoiding cross-core synchronization
overheads [39]. Unfortunately, CPHash suffers from an ineffi-
cient implementation for cross-core messaging, and a lack of
lock-free read operations required to match the performance
of modern lock-free hash tables.
Partitioned hash tables were further explored in the con-

text of network-attached key-value stores [33]. Mica relies
on hardware support from the network interface to delegate
requests via a queue handled by a specific core [33]. Simi-
lar to DRAMHiT-P, Mica serves read requests from multiple
cores, which allows scalability on read-dominated workloads.
Compared to distributed systems like Mica, DRAMHiT-P has
a much tighter cycle budget per request and hence needs
a range of novel optimizations to meet it. Arguably, opti-
mizations suggested in our work can be used to accelerate
network-attached systems as well.

Fast inter-core communication The first concurrent lock-
free queue that allowed synchronization without locks or
atomic primitives was introduced by Lamport [28]. Unfor-
tunately, despite its lock-free design, Lamport’s queue suf-
fers from constant cache thrashing of the producer and con-
sumer pointers, i.e., transfers of cache lines between pro-
ducer and consumer cores. DBLS [65], MCRingBuffer [30]
and Liberty [22] optimize Lamport’s design by adding a lazy
loading optimization that reduces the number of accesses
to the shared producer and consumer pointers. In addition,
DBLS [65] and MCRingBuffer [30], BatchQueue [52], Lib-
erty [22] introduce batching optimizations that keep en-
queue and dequeue indices updating shared control state
once per batch of enqueue operations. FastForward elimi-
nates sharing of the control state by storing a special NULL
value directly into the element of the queue after it was pro-
cessed [14]. Also, to reduce cache-line bouncing between

the cores, FastForward proposed an adaptive flow-control
algorithm ensuring that the producer and consumer do not
access the same cache line of the queue. Another batching
queue, BQueue, addresses the problem of deadlock typical
for batching queues by introducing an idea of backtracking,
i.e., probing the batch space in the power-of-two decrements
when the producer becomes idle [67]. Lynx further special-
izes the batch queue by removing the queue logic that is
responsible for checking the boundary conditions from the
critical path of the enqueue and dequeue operations [41]. To
handle queue overflow, Lynx relies on CPU exceptions (de-
livered through signal handlers) triggered when the enqueue
and dequeue code performs an access outside of the queue
area. Unfortunately, signal handling does not scale well on
commodity operating system kernels like Linux due to a
global lock in the signal delivery path. While Lynx’ demon-
strates impressive performance numbers on a single-core,
single-queue setup, our attempts to scale it were unsuccess-
ful. A large fraction of Lynx’s impressive performance is due
to aggressive compiler inlining and optimizations possible
only for a point-to-point (i.e., single queue) communication—
the compiler inlines queue metadata and keeps all local state
in registers. Scaling Lynx to larger number of queues intro-
duces additional memory accesses (2-3 cycles per L1 memory
access), which negatively affects Lynx’ performance when
more than one queue is used.

6 Conclusions
Our work explores new ways of improving hash table per-
formance on modern hardware. We argue that modern ma-
chines should be treated as distributed systems with rela-
tively expensive communication channels across non-uniform
memory and caches. We develop a range of optimizations
typical for a distributed system—asynchronous interface,
fully-prefetched memory access, batching with out-of-order
completion, and a scalable delegation scheme—borrowing
insights from distributed systems, but applying them in the
environment of a commodity server. These optimizations al-
low us to design a hash table that can saturate the bandwidth
of a modern memory subsystem—arguably, the real architec-
tural bottleneck on modern machines—and outperform the
fastest commodity hash tables by a factor of two.

Acknowledgments
We would like to thank USENIX ATC’21 and EuroSys’23
reviewers and our shepherd, Sam H. Noh, for numerous
insights helping us to improve this work. Also, we would like
to thank Harishankar Vishwanathan, Daman Mohan Kumar,
and Nivedha Krishnakumar who contributed to various parts
of the system. This research is supported in part by the
National Science Foundation under Grant Numbers CNS-
1817120. Vikram Narayanan is partly supported by an IBM
PhD fellowship.

DRAMHiT: A Hash Table Architected for the Speed of DRAM EuroSys ’23, May 8–12, 2023, Rome, Italy

References

[1] Pham Nguyen Quang Anh, Rui Fan, and Yonggang Wen. Balanced
Hashing and Efficient GPU Sparse General Matrix-Matrix Multiplica-
tion. In Proceedings of the 2016 International Conference on Supercom-
puting (ICS ’16), 2016.

[2] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu.
Main-Memory Hash Joins on Multi-Core CPUs: Tuning to the Under-
lying Hardware. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE 2013), pages 362–373, April 2013.

[3] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and Evalua-
tion of Main Memory Hash Join Algorithms for Multi-Core CPUs.
In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’11), pages 37–48, 2011.

[4] Silas Boyd-Wickizer, M Frans Kaashoek, Robert Morris, and Nickolai
Zeldovich. Non-scalable locks are dangerous. In Proceedings of the
Linux Symposium, pages 119–130, 2012.

[5] Intel Corporporation. Intel® Memory Latency Checker. https:
//www.intel.com/content/www/us/en/developer/articles/tool/intelr-
memory-latency-checker.html. Accessed: 2022-05-18.

[6] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything
you always wanted to know about synchronization but were afraid to
ask. In Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP ’13), pages 33–48, 2013.

[7] David J DeWitt and Robert Gerber. Multiprocessor Hash-Based Join
Algorithms. In Proceedings of the 11th International Conference on Very
Large Data Bases (VLDB ’85), pages 151–164, 1985.

[8] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-
tao Shang, and Jinnah Dylan Hosein. Maglev: A Fast and Reliable
Software Network Load Balancer. In 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI ’16), pages 523–535,
2016.

[9] Carla Schlatter Ellis. Extendible hashing for concurrent operations
and distributed data. In Proceedings of the 2nd ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems (PODS ’83), pages 106–
116, 1983.

[10] Carla Schlatter Ellis. Concurrency in linear hashing. ACM Transactions
on Database Systems, 12(2), 1987.

[11] Marius Erbert, Steffen Rechner, and Matthias Müller-Hannemann.
Gerbil: a fast and memory-efficient k-mer counter with gpu-support.
Algorithms for Molecular Biology, 12(1):9, 2017.

[12] Flux Research Group. CloudLab Web site. http://www.cloudlab.us.
[13] Hui Gao, Jan Friso Groote, and Wim H Hesselink. Lock-free dynamic

hash tables with open addressing. Distributed Computing, 18(1):21–42,
2005.

[14] JohnGiacomoni, TippMoseley, andManish Vachharajani. FastForward
for Efficient Pipeline Parallelism: A Cache-Optimized Concurrent Lock-
Free Queue. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’08), pages 43–52,
2008.

[15] Google. The CityHash family of hash functions. http://code.google.
com/p/cityhash/. Accessed: 2021-01-12.

[16] Google. Folly: Facebook Open-source Library. https://github.com/
facebook/folly/. Accessed: 2021-01-12.

[17] Michael Greenwald. Two-handed emulation: How to build non-
blocking implementations of complex data-structures using dcas. In
Proceedings of the 21st Annual Symposium on Principles of Distributed
Computing (PODC ’02), pages 260–269. Association for Computing
Machinery, 2002.

[18] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat Com-
bining and the Synchronization-Parallelism Tradeoff. In Proceedings
of the 22nd Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’10), pages 355–364, 2010.

[19] Maurice Herlihy andNir Shavit. The Art ofMultiprocessor Programming,
chapter 13. Morgan Kaufmann Publishers, 2008.

[20] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing. In
International Symposium on Distributed Computing (DISC 2008), pages
350–364, 2008.

[21] Meichun Hsu and Wei-Pang Yang. Concurrent Operations in Ex-
tendible Hashing. In Proceedings of the 12th International Conference
on Very Large Data Bases (VLDB ’86), pages 241–247, aug 1986.

[22] Thomas B Jablin, Yun Zhang, James A Jablin, Jialu Huang, Hanjun
Kim, and David I August. Liberty queues for epic architectures. In
Proceedings of the Eigth Workshop on Explicitly Parallel Instruction
Computer Architectures and Compiler Technology (EPIC), 2010.

[23] John McCalpin. Topology and Cache Coherence in Knights Landing
and Skylake Xeon Processors. https://www.ixpug.org/documents/
1524216121knl_skx_topology_coherence_2018-03-23.pptx. Accessed
2022-10-10.

[24] Endrias Kahssay. A fast concurrent and resizable Robin Hood hash
table, 2021.

[25] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D.
Nguyen, Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep
Dubey. Sort vs. Hash Revisited: Fast Join Implementation on Modern
Multi-Core CPUs. In Proceedings of the VLDB Endowment, volume 2,
pages 1378–1389, Aug 2009.

[26] Marek Kokot, Maciej Długosz, and Sebastian Deorowicz. Kmc 3: count-
ing and manipulating k-mer statistics. Bioinformatics, 33(17):2759–
2761, 2017.

[27] Vijay Kumar. Concurrent operations on extendible hashing and its
performance. Communications of the ACM, 33(6):681–694, jun 1990.

[28] Leslie Lamport. Specifying concurrent program modules. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 5(2):190–
222, 1983.

[29] Doug Lea. util.concurrent.ConcurrentHashMap, revision 1.3. JSR-166,
the Proposed Java ConcurrencyPackage. http://gee.cs.oswego.edu/cgi-
bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent, 2003.

[30] Patrick P. C. Lee, Tian Bu, and Girish Chandranmenon. A Lock-
Free, Cache-Efficient Shared Ring Buffer for Multi-Core Architectures.
In Proceedings of the 5th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS ’09), pages 78–79,
2009.

[31] Daniel Lemire. fastrange: A fast alternative to the modulo reduction.
https://github.com/lemire/fastrange/. Accessed: 2023-02-20.

[32] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and Michael J.
Freedman. Algorithmic Improvements for Fast Concurrent Cuckoo
Hashing. In Proceedings of the 9th European Conference on Computer
Systems (EuroSys ’14), pages 1–14, 2014.

[33] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. MICA: A Holistic Approach to Fast In-Memory Key-Value Storage.
In 11th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI ’14), pages 429–444, 2014.

[34] Victor Luchangco, Mark Moir, and Nir Shavit. Nonblocking K-
Compare-Single-Swap. In Proceedings of the Fifteenth Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA ’03), pages
314–323, 2003.

[35] Tobias Maier, Peter Sanders, and Roman Dementiev. Concurrent Hash
Tables: Fast and General(?)! ACM Transactions on Parallel Computing,
5(4), February 2019.

[36] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for
efficient parallel counting of occurrences of k-mers. Bioinformatics,
27(6):764–770, 2011.

[37] Paul E McKenney and John D Slingwine. Read-copy update: Using
execution history to solve concurrency problems. In Parallel and
Distributed Computing and Systems, volume 509518, 1998.

[38] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures:
The Basic Toolbox. Springer Science & Business Media, 2008.

https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
http://www.cloudlab.us
http://code.google.com/p/cityhash/
http://code.google.com/p/cityhash/
https://github.com/facebook/folly/
https://github.com/facebook/folly/
https://www.ixpug.org/documents/1524216121knl_skx_topology_coherence_2018-03-23.pptx
https://www.ixpug.org/documents/1524216121knl_skx_topology_coherence_2018-03-23.pptx
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent
https://github.com/lemire/fastrange/

EuroSys ’23, May 8–12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

[39] ZviadMetreveli, Nickolai Zeldovich, andM. Frans Kaashoek. CPHASH:
A Cache-Partitioned Hash Table. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’12), pages 319–320, 2012.

[40] Maged M. Michael. High Performance Dynamic Lock-Free Hash
Tables and List-Based Sets. In Proceedings of the Fourteenth Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA ’02),
pages 73–82, 2002.

[41] Konstantina Mitropoulou, Vasileios Porpodas, Xiaochun Zhang, and
Timothy M. Jones. Lynx: Using os and hardware support for fast
fine-grained inter-core communication. In Proceedings of the 2016
International Conference on Supercomputing (ICS ’16), 2016.

[42] Daniel Molka, Daniel Hackenberg, and Robert Schöne. Main memory
and cache performance of Intel Sandy Bridge and AMD Bulldozer.
In Proceedings of the workshop on Memory Systems Performance and
Correctness, pages 1–10, 2014.

[43] Daniel Molka, Daniel Hackenberg, and Robert Schöne. Main Memory
and Cache Performance of Intel Sandy Bridge and AMD Bulldozer.
In Proceedings of the Workshop on Memory Systems Performance and
Correctness (MSPC ’14). Association for Computing Machinery, 2014.

[44] Daniel Molka, Daniel Hackenberg, Robert Schöne, and Matthias S.
Muller. Memory Performance and Cache Coherency Effects on an Intel
Nehalem Multiprocessor System. In Proceedings of the 18th Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT ’09), pages 261–270, 2009.

[45] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal
of Algorithms, 51(2):122–144, 2004.

[46] Tony C. Pan, Sanchit Misra, and Srinivas Aluru. Optimizing High
Performance Distributed Memory Parallel Hash Tables for DNA k-mer
Counting. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’18), pages 135–147, Nov 2018.

[47] Tian Bu Patrick P. C. Lee and Girish Chandranmenon. A lock-free,
cache-efficient multi-core synchronization mechanism for line-rate
network traffic monitoring. In 2010 IEEE International Symposium on
Parallel Distributed Processing (IPDPS), pages 1–12, 2010.

[48] Paul E. McKenney. RCU vs. locking performance on different CPUs.
In Linux.Conf.Au, 2004.

[49] Chuck Pheatt. Intel® threading building blocks. Journal of Computing
Sciences in Colleges, 23(4):298–298, 2008.

[50] Nick Piggin. ddds: "dynamic dynamic data structure" algorithm, for
adaptive dcache hash table sizing (resend). https://lwn.net/Articles/
302132/. Accessed: 2022-10-10.

[51] Jeff Preshing. Junction. https://github.com/preshing/junction/. Ac-
cessed: 2021-01-12.

[52] Thomas Preud’homme, Julien Sopena, Gael Thomas, and Bertil Folliot.
Batchqueue: Fast and memory-thrifty core to core communication. In
2010 22nd International Symposium on Computer Architecture and High
Performance Computing, pages 215–222, 2010.

[53] Robert Ricci, Eric Eide, and The CloudLab Team. Introducing Cloud-
Lab: Scientific Infrastructure for Advancing Cloud Architectures and
Applications. ; login:: the magazine of USENIX & SAGE, 39(6):36–38,
2014.

[54] Erik Rigtorp. Aligned AVX loads and stores are atomic. https://rigtorp.
se/isatomic/. Accessed: 2022-05-18.

[55] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. FFWD: Del-
egation is (Much) Faster than You Think. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17), pages 342–358,
2017.

[56] Leonard D. Shapiro. Join Processing in Database Systems with Large
MainMemories. ACM Transactions on Database Systems, 11(3):239–264,
1986.

[57] Moustafa Shokrof, C Titus Brown, and Tamer A Mansour. Mqf and
buffered mqf: Quotient filters for efficient storage of k-mers with their
counts and metadata. BMC bioinformatics, 22(1):1–14, 2021.

[58] Julian Shun and Guy E. Blelloch. Phase-Concurrent Hash Tables for
Determinism. In Proceedings of the 26th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’14), pages 96–107, 2014.

[59] Alex Stivala, Peter J Stuckey, Maria Garcia de la Banda, Manuel
Hermenegildo, and Anthony Wirth. Lock-free parallel dynamic pro-
gramming. Journal of Parallel and Distributed Computing, 70(8):839–
848, 2010.

[60] Tony Stornetta and Forrest Brewer. Implementation of an efficient par-
allel BDD package. In 33rd Design Automation Conference Proceedings,
1996, pages 641–644, 1996.

[61] Josh Triplett, Paul E McKenney, and Jonathan Walpole. Resizable,
Scalable, Concurrent Hash Tables via Relativistic Programming. In
2011 USENIX Annual Technical Conference (USENIX ATC 11), 2011.

[62] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. Speedy Transactions in Multicore In-Memory Databases.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13), pages 18–32, 2013.

[63] Freark I. van der Berg and Jaco van de Pol. Concurrent Chaining
Hash Maps for Software Model Checking. In 2019 Formal Methods in
Computer Aided Design (FMCAD), pages 46–54, 2019.

[64] Markus Velten, Robert Schöne, Thomas Ilsche, and Daniel Hacken-
berg. Memory Performance of AMD EPYC Rome and Intel Cascade
Lake SP Server Processors. In Proceedings of the 2022 ACM/SPEC on
International Conference on Performance Engineering (ICPE ’22), pages
165–175, 2022.

[65] Cheng Wang, Ho-seop Kim, Youfeng Wu, and Victor Ying. Compiler-
managed software-based redundant multi-threading for transient fault
detection. In International Symposium on Code Generation and Opti-
mization (CGO’07), pages 244–258, 2007.

[66] JiananWang, Su Chen, Lili Dong, and GuohuaWang. CHTKC: a robust
and efficient k-mer counting algorithm based on a lock-free chaining
hash table. Briefings in Bioinformatics, 22(3), 05 2020.

[67] Junchang Wang, Kai Zhang, Xinan Tang, and Bei Hua. B-Queue:
Efficient and Practical Queuing for Fast Core-to-Core Communication.
International Journal of Parallel Programming, 41(1):137–159, 2013.

[68] Herbert Xu. bridge: Add core igmp snooping support. http://git.kernel.
org/linus/eb1d16414339a6e113d89e2cca2556005d7ce919. Accessed:
2022-10-10.

A Artifact Appendix

A.1 Abstract

We release the source code of all software used in this paper
along with detailed build instructions and automated scripts
used for running the benchmarks as a collection of publicly-
hosted Git repositories.

A.2 Description & Requirements

A.2.1 How to access The artifacts are hosted at the git
repository https://github.com/mars-research/dramhit-artifacts/
tree/esys23-ae-v1. The evaluated version of the artifact is
available at https://doi.org/10.5281/zenodo.7719328.

A.2.2 Hardware dependencies Wehave testedDRAMHiT
on the following hardware (available on CloudLab):

• Dell PowerEdge C6420 machine configured with two
Intel Xeon Gold 6142 CPUs

• Dell Poweredge R6525 machine configured with two
AMD Epyc 7543 CPUs

https://lwn.net/Articles/302132/
https://lwn.net/Articles/302132/
https://github.com/preshing/junction/
https://rigtorp.se/isatomic/
https://rigtorp.se/isatomic/
http://git.kernel.org/linus/eb1d16414339a6e113d89e2cca2556005d7ce919
http://git.kernel.org/linus/eb1d16414339a6e113d89e2cca2556005d7ce919
https://github.com/mars-research/dramhit-artifacts/tree/esys23-ae-v1
https://github.com/mars-research/dramhit-artifacts/tree/esys23-ae-v1
https://doi.org/10.5281/zenodo.7719328

DRAMHiT: A Hash Table Architected for the Speed of DRAM EuroSys ’23, May 8–12, 2023, Rome, Italy

Though we have not tested it on other hardware, the ex-
periments should be reproducible on a range of machines as
long as all the memory channels are populated.

A.2.3 Software dependencies The DRAMHiT build in-
frastructure was tested on an x86-64 Ubuntu 22.04 LTS sys-
tem.

A.2.4 Benchmarks None

A.3 Set-up

We conduct all experiments in the openly-available CloudLab
cloud infrastructure testbed [12] and make our experimenta-
tion environment available via an open CloudLab [53] pro-
file that automatically creates the software environment re-
quired to run DRAMHiT: https://github.com/mars-research/
cloudlab-profiles/tree/kvstore-ae.

A.4 Evaluation Workflow

A.4.1 Major Claims
• (C1): DRAMHiT achieves 973Mops for reads and 792Mops
for writes on 64 threads outperforming existing lock-
free designs by nearly a factor of two. This is proven
by the experiment (E2) described in Figure 6b whose
results are discussed in Section 4.2.

A.4.2 Experiments The following experiments (E1-E3)
were evaluated by the artifact evaluation committee as our
peer-reviewed paper only had these experiments.

• Experiment (E1): Synchronization overheads [5 human-
minutes + 1 compute-hour]: measures the overheads of
various synchronization primitives such as spinlocks
and atomic increments on two different datasets (32
MB and 1 GB).
The script (under the fig2 directory) from the artifact
repository contains the necessary scripts to configure,
run and plot Figure 2.

• Experiment (E2): Hash table experiments [5 human-
minutes + 12 compute-hour]: measures the throughput
of insertions and lookups on two different distributions
(uniform and zipfian with different skews) for two
different datasets (small and large).
The script (under the ht−bench directory) from the arti-
fact repository contains the necessary scripts to con-
figure, run and plot Figure 6.

• Experiment (E3): Latency [5 human-minutes + 5
compute-hours]: measures the latency of insertion and
lookups on a 64-thread configuration.
The setup script under the latency directory builds and
runs the program to measure the latency of insertion
and lookup on folklore, DRAMHiT, and DRAMHiT-P,
and plots a cumulative distribution function (CDF) (Fig-
ure 9).

• Experiment (E4): Macro benchmark (kmer histogram)
[5 human-minutes + 5 compute-hours]: measures the
insertion throughput of k-mers for various values of
𝑘 .
The setup script under the kmer−bench directory builds
and runs the program tomeasure the insertion through-
put on folklore, DRAMHiT, andDRAMHiT-P, and com-
pares with one of the existing state-of-the-art kmer
counters that uses lock-free hash tables Figure 12.

A.4.3 Additional experiments We performed the fol-
lowing additional experiments for the camera-ready version
of the paper. The artifacts for these experiments are hosted at
the git repository https://github.com/mars-research/dramhit-
artifacts.
Set-up We use an updated profile that automatically creates
the software environment required to runDRAMHiT: https://
github.com/mars-research/cloudlab-profiles/tree/dramhit-ae.

• Experiment (E5) Hash table experiments on AMD
architecture, where we perform the same set of ex-
periments on an AMD node to understand how the
optimizations behave on a different architecture.
The script (under the ht−bench directory) from the arti-
fact repository contains the necessary scripts to con-
figure, run and plot Figures 10 and 11.

• Experiment (E6): Cache pollution [5 human-minutes
+ 6 compute-hours]: measures the impact of hash table
performance when an application competes for the
cache space.
The setup script under the pollutions directory builds
and runs folklore, DRAMHiT, and DRAMHiT-P by
polluting the cache after every operation to measure
the throughput for insertions and lookups and plots
Figure 6c.

• Experiment (E7): Mixedworkloads [5 human-minutes
+ 8 compute-hours]: measures the hash table perfor-
mance with a mix of insertions and lookups. We vary
the read probability from 0.1 to 1.0, which controls the
proportion of insert and lookup operations.
The setup script under the mixed−workloads directory
builds and runs folklore, DRAMHiT, and DRAMHiT-P
to plot the combined throughput for insertions and
lookups in Figure 8c.

• Experiment (E8): Impact of batching [5 human-minutes
+ 8 compute-hours]: measures how the hash table per-
formance varies when the batch size is varied. We vary
the batch length in power-of-two increments from 1
to 16.
The setup script under the batching directory builds
and runs DRAMHiT, and DRAMHiT-P by varying the
batch length and plots the Figure 7.

https://github.com/mars-research/cloudlab-profiles/tree/kvstore-ae
https://github.com/mars-research/cloudlab-profiles/tree/kvstore-ae
https://github.com/mars-research/dramhit-artifacts
https://github.com/mars-research/dramhit-artifacts
https://github.com/mars-research/cloudlab-profiles/tree/dramhit-ae
https://github.com/mars-research/cloudlab-profiles/tree/dramhit-ae

	Abstract
	1 Introduction
	2 Background
	3 DRAMHiT Architecture
	3.1 Prefetch Engine
	3.2 Partitioning for High Skew
	3.3 Delegation
	3.4 Vectorization

	4 Evaluation
	4.1 Delegation
	4.2 Performance on Uniformly Distributed Keys
	4.3 Performance on Skewed Distributions
	4.4 Latency
	4.5 Alternative CPU Architecture: AMD
	4.6 Macrobenchmarks

	5 Related work
	6 Conclusions
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation Workflow

