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The Opportunities and Limitations  
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for Fine-Grained Isolation
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Extended Page Table switching with VMFUNC is a hardware isolation mechanism available in Intel CPUs. 
VMFUNC is attractive for low overhead and the possibility to isolate privileged kernel code. However, 
many careful design decisions are needed to ensure the security of the isolation boundary. 

A steady increase in the number of security attacks 
(combined with a growing level of attack com-

plexity and automation) triggered a renewed interest 
in hardware support for isolation. After decades of rela-
tively slow adoption, recent generations of commod-
ity CPUs introduced a range of new hardware isolation 
mechanisms. Intel Memory Protection Keys (MPKs) 
and Extended Page Table (EPT) switching with vir-
tual machine (VM) functions (VMFUNC) develop 
support for memory isolation with overheads gradually 
approaching the overhead of a function call.1,2,3,4

Both Intel and ARM architectures explore hard-
ware support for software fault isolation (SFI). 
The latest ARM CPUs introduce 16-B-granularity 
memory isolation with memory tagging extensions 
(MTEs). MTE can potentially enable low-overhead 
bounds checks and zero-copy exchange of data between 
isolated subsystems. Moreover, both ARM and x86 
provide support for control-flow integrity (CFI) and 
stack protection.

While making an appealing promise to enable practi-
cal fine-grained isolation, the aforementioned mecha-
nisms require a collection of careful design decisions 
to enforce the security of the isolation boundary. For 
example, isolation with MPKs relies on either the 
binary rewriting of all wrpkru instruction instances1 or 
dynamic validation with hardware breakpoints2 (the 
wrpkru instruction updates a register that holds the 
current tag and hence controls the boundaries of acces-
sible memory).

Understanding the design choices, security require-
ments, and limitations of modern hardware isolation 
mechanisms is critical for deploying efficient and secure 
isolation solutions. Similarly, it is essential for providing 
informed feedback to hardware engineers responsible 
for the next generation of hardware isolation primitives 
in commodity CPUs.

This article takes a deep dive into the design chal-
lenges of implementing a secure isolation bound-
ary on top of one of the modern hardware isolation 
mechanisms: EPT switching with VMFUNC. We base 
our analysis on our experience of implementing the 
fine-grained isolation of Linux kernel modules with 
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EPT switching4 as well as on an exploration of several 
other VMFUNC-based systems.3,5,6

We first survey recent hardware isolation mecha-
nisms, trying to highlight their relative advantages and 
limitations, and then provide a detailed discussion of 
principles and mechanisms involved in implement-
ing a VMFUNC-based isolation boundary. Like other 
hardware isolation mechanisms, VMFUNC provides a 
unique mix of advantages and limitations. 

A distinct advantage of VMFUNC is its ability to 
ensure the security of the isolation boundary (and spe-
cifically, the safety of vmfunc instructions) through a 
collection of invariants that control the layout of virtual 
and physical address spaces as opposed to the binary 
rewriting and techniques of SFI required to protect 
other isolation mechanisms, for example, Intel MPK, 
ARM MTE, and ARM pointer authentication (PAC). 
On the other hand, VMFUNC requires the execution 
of a system under the control of the hypervisor that can 
be restrictive due to the need to support nested virtual-
ization in a virtualized data center. To further highlight 
the unique properties of VMFUNC-based solutions, 
we explore how EPT switching can be used for the 
isolation of a privileged ring 0 kernel code. By execut-
ing the system under the control of a hypervisor, a 
VMFUNC-based solution can control access to a sensi-
tive hardware state at the hypervisor level [that is, control 
whether an isolated subsystem can access privileged con-
trol and model-specific registers (MSRs), input–output  
(I/O) ports, etc.]. We analyze additional mechanisms 
that are needed for isolating code that executes with ring 0 
privileged, that is, ensuring the safety of cross-subsystem 
invocations, providing the safe and efficient handling of 
interrupts, etc.

The Landscape of Modern Hardware 
Isolation Primitives
In the last decade, commodity CPUs introduced a diverse 
range of hardware primitives aimed at the support of 
practical fine-grained memory isolation. While clearly 
a leap forward, existing hardware mechanisms rely on a 
complex combination of software techniques required to 
ensure the integrity of the isolation boundary. No matter 
which mechanism is used, isolation depends on complex 
design, engineering, and performance tradeoffs.

Intel MPK
MPKs are an isolation mechanism available on Intel 
CPUs since Skylake. MPK allows one to enforce isolation 
within a single address space (Figure 1), that is, a single 
page table, by tagging individual pages with a 4-b protec-
tion key (saved in the unused bits of the page table entry). 
A special register, pkru, holds a bitmap that allows access 

to a combination of tags (that is, any combination from 
none to all is possible by setting individual bits in the bit-
map). The pkru register specifies the access rights for 
each protection key with 2 b per key (access disable and 
write disable). Read or write access to a page is allowed 
only if the value of the pkru register matches the tag of 
the page. Crossing between protection domains is per-
formed by writing a new tag value into the pkru register 
with an unprivileged wrpkru instruction.

Limitations. Isolation with MPK requires control over 
all wrpkru instructions throughout the code of the 
program to prevent unauthorized transitions between 
address spaces. In the past, control over wrpkru was 
demonstrated with either binary rewriting1 or dynamic 
validation of all wrpkru instructions with hardware 
breakpoints.2 Also, MPK enforces checks only on data 
accesses but does not limit control-flow transitions.

Moreover, similar to other tag-based solutions (for 
example, ARM MTE), MPK is limited to only 16 pro-
tection domains. libmpk provides a software abstrac-
tion for overcoming this limitation by virtualizing the 
keys, but it is expensive as the application programming 
interface involves several syscalls.7 Extended protection 
keys virtualize the number of keys by combining MPK 
with EPT switching8 but at the cost of the additional 
complexity and overheads of the VMFUNC-based 
approaches that we discuss later.

ARM MTE
Starting with ARMv8.3-A, ARM systems-on-chip (SoCs) 
introduce support for MTEs that allow partitioning the 

Figure 1. Domain isolation using MPK. Page table entries store a 4-b tag.  
The pkru register controls that tags can be accessed at the moment (that is, in 
the figure read and write access, to pages with tag 4 is allowed). PKEY: protection 
key; PKRU: protection-key rights register for user pages; WD: write disable;  
AD: access disable.
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address space into 16-B regions that are colored with 
one of the 16 tags. The hardware maintains a table that 
stores mapping between addresses and tags, allowing 
access to the region only if the tag of the pointer (the 
tag stored in the upper bits of the pointer) matches the 
tag of the memory region. MTE itself does not directly 
support isolation—the attacker can change the upper 
bits of the pointer that contain the tag. To enforce isola-
tion, it is possible to combine MTE with the techniques 
of SFI, that is, rely on binary rewriting or compile-time 
instrumentation to enforce a specific tag on every load 
and store operation.

Limitations. Two overheads impact the performance 
of MTE-based isolation solutions. First, the enforce-
ment of hardware tags relies on SFI techniques, which, 
in turn, require the control of not only load and store 
operations (to restrict access to the memory of the iso-
lated subsystem) but also control-flow enforcement. 
SFI solutions were demonstrated to achieve an over-
head of only a few percent but only with one isolated 
subsystem.9 The isolation of multiple subsystems and 
exchange of objects across the isolation boundaries 
sharply degrade performance.

Second, similar to Intel MPK, ARM MTE is limited 
to only 16 isolated subsystems due to the space limi-
tation of unused pointer bits. HAKC combines MTE 
with ARM PAC to extend the number of possible tags10 
but provides no practical protection as it fails to enforce 
temporal safety (we will discuss this later).

ARM PAC
Starting with ARMv8.3-A , ARM SoCs support 
cr y ptographic PAC. PAC implements the ability 

to cryptographically sign a pointer and store the sig-
nature in the “unused” upper bits of the pointer (Fig-
ure 2). The signature is generated from 1) the pointer 
value, 2) a secret key protected by the operating sys-
tem (OS), and 3) a 64-b program-defined “signing 
context” that allows the isolation scheme to restrict 
the use of a pointer in a custom way, for example, 
allow using the pointer only if the value of the stack 
pointer (sp) is identical at the moment of signing and 
authenticating the signature. A signed pointer can-
not be used directly but instead has to be authenti-
cated with the same secret key and context. If either 
the pointer, its signature, or the context is different 
from the values used during signing, the authentica-
tion results in an invalid pointer value that triggers a 
hardware exception when used. However, this leaves 
room for an attacker to make repeated guesses at the 
correct PAC value for this address if the authenticated 
pointer is not immediately used.

ARMv8.6-A introduced faulting PAC (FPAC), which 
generates an exception when an authentication failure 
occurs instead of during use. PAC is a powerful mecha-
nism that can be used to enforce control flow, spatial and 
temporal11,12 safety, and the isolation of subsystems.10,13

Isolation with PAC requires maintaining metadata 
about each memory object, that is, the size, type, and 
liveness of an object that are used to enforce the type, 
memory, temporal safety, and access rights for a cur-
rently executing isolated subsystem. Compiler instru-
mentation is used to generate instructions that check 
the memory and temporal safety (the bounds, type, 
and liveness of an object) on each memory access 
along with permission to access the object. Metadata 
can be saved next to the object itself11 or in a sepa-
rate memory region.12 HAKC tries to build a PAC  
isolation scheme that can avoid metadata lookups 
altogether by combining PAC with ARM MTE. Spe-
cifically, HAKC tags each memory object with an 
MTE tag that allows it to enforce bounds checks.10 
Unfortunately, in an attempt to avoid metadata look-
ups, HAKC has no mechanism to check the liveness 
of objects on the heap. It is therefore prone to a sim-
ple attack in which an attacker sprays the heap by allo-
cating a large number of objects that it subsequently 
deallocates while preserving pointers to these objects. 
Since HAKC does not perform a liveness check, the 
attacker can later use saved pointers to access objects 
that are reallocated on the heap.

Limitations. Similar to SFI approaches, PAC suffers from 
the overheads of executing additional instructions required 
to look up and validate metadata, check pointer signa-
tures, etc. on each memory access.10,11,12 For example, 
the average runtime overhead of PACMem is 68.73%.12 

Figure 2. Spatiotemporal memory safety with PAC. PACMem uses the PAC 
value from a sealed pointer as an index into the metadata table that contains 
a random context (to unseal the pointer), a base address, and the size of the 
pointer. If the bounds checks and authentication pass, access through the 
pointer is allowed. When the object is deallocated, the entry in the metadata 
table is set to zero. 
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Additionally, existing PAC-based isolation schemes lack 
strong security guarantees. For example, PACMem can be 
attacked due to the lack of a strong source of randomness 
as well as a potential of a hash collision.12

Intel CET
Intel introduced control-flow enforcement technology 
(CET), a hardware feature to mitigate return-oriented 
programming (ROP)-style attacks (ROP, jump-oriented 
programming, and call-oriented programming) by 
enforcing coarse-grained CFI. It consists of 1) a shadow 
stack (SHSTK) to protect the return addresses that can 
be corrupted by buffer-overflow attacks and 2) an indi-
rect branch tracking that protects the forward control 
flow of the program. 
SHSTK records the 
return addresses in a 
hardware-protected 
stack region along 
with the regular stack; 
when the ret instruc-
tion is executed, the 
return addresses are 
compared to generate 
an exception if there 
is a mismatch. SHSTK 
provides write-protected pages (using an unused com-
bination of read, write, and dirty bits in the page table) 
to store return addresses. For error handling, it also 
provides an instruction to write into the shadow 
stack (WRSS).

Limitations. While by itself CET is not designed to 
provide the isolation of subsystems, it is possible to 
utilize a hardware-protected shadow stack memory to 
provide a memory isolation abstraction.14 CETIS14 
utilizes the SHSTK mechanism and the WRSS instruc-
tion to protect the data of an isolated subsystem. 
Though CETIS offers write protection across sub-
systems, the data in the protected region can be arbi-
trarily read.

Intel Sub-Page Protection
Intel Sub-Page Protection (SPP) provides a mechanism 
to control the permissions of a guest physical page at a 
finer granularity. The EPT page table is complemented 
with a subpage permission table, a structure similar to 
a page table, that allows the write accesses to be con-
trolled at a 128-B subpage granularity.

Limitations. SPP controls only write accesses and does not 
prevent reads. Additionally, similar to VMFUNC, SPP 
requires that the isolated domains are running in VT-x 
nonroot context and undergo address translation through 

EPT. By controlling the layout of data structures shared 
between the two domains (for example, the kernel and 
the isolated driver), one could implement SPP protection 
on top of the existing VMFUNC mechanism we described 
previously to provide read-only and controlled-write 
accesses to regions of memory in other domains. 

Intel VMFUNC
EPT switching with VMFUNC was introduced in the 
Skylake generation of Intel CPUs. VMFUNC allows 
a VM guest to change the root of the EPT (Figure 3). 
The hypervisor configures a table with available EPT 
root pointers, and the vmfunc instruction can select 
one of the pointers by providing an index. The vmfunc 

i s  an unpriv i leged 
instruction and can 
be invoked inside the 
V T-x nonroot con-
text at any privilege 
level. The vmfunc 
instruction does not 
change any of the reg-
isters (besides advanc-
ing the instruction 
pointer), but the guest 
physical  addresses 

(GPAs) are translated to host physical addresses 
(HPAs) through a new EPT. The execution continues 
with the next instruction, but it is fetched through the 
new EPT.

The execution of the VMFUNC instruction does 
not change the value of the cr3 control register that con-
tains the physical address of the guest page table root. 
However, switching to a different EPT might change the 
mapping of GPAs to HPAs and may alter the contents 
of the guest page table. Since modern CPUs support 
tagging of the translation lookaside buffer using virtual 
processor identifiers, the vmfunc instruction is relatively 
fast—the cost of changing the isolation boundary can 
be as low as 109–147 cycles2,3,4,15 plus the overhead of 
performing a cross-domain invocation, that is, saving 
and restoring general and extended registers, selecting 
a callee stack, etc. Although Intel patents describe EPT 
switching as a mechanism to provide the isolation of 
subsystems within a guest VM, implementing a secure 
isolation boundary with VMFUNC is challenging and 
requires multiple careful design decisions. Next, we dis-
cuss a collection of principles and mechanisms required 
to secure an EPT-based isolation boundary.

Challenges of Isolation With  
EPT Switching
Lightweight EPT switching allows for a conceptually 
simple isolation approach. Multiple EPTs can map 

EPT switching with VMFUNC was 
introduced in the Skylake generation  

of Intel CPUs. 
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disjoint subsets of machine pages, isolating the address 
spaces of mistrusting subsystems. To switch between 
the address spaces, a call-gate page with the vmfunc 
instruction is mapped by a pair of communicating 
EPTs. Naturally, isolation with EPT relies on the exe-
cution of isolated subsystems inside VT-x nonroot 
context controlled by a hypervisor. This, however, can 
be transparently achieved for both unprivileged user 
code (with a minimal hypervisor like Dune16 that 
transparently executes user processes as VT-x nonroot 
contexts) and kernel subsystems (with a late-launch 
hypervisor that deprivileges the kernel in a manner 
similar to a rootkit4).

Cross-Subsystem Invocations
EPT switching provides a natural mechanism for imple-
menting cross-subsystem invocations without exiting 
into the OS kernel or hypervisor. During the invocation, 
the execution can continue on the same thread (albeit on 
a new stack) but in a different address space provided by 
the new EPT mappings. As vmfunc advances the pro-
gram counter to the next instruction, this next instruction 
must be valid in the address space of the callee. To make 
sure that execution can continue upon a switch, one can 
map a special trampoline page in both address spaces at 
the same virtual address. While the page can contain dif-
ferent code in two address spaces, the callee’s entry point 
must follow the address of the vmfunc instruction in the 
caller’s address space.

A typical call-gate trampoline saves the state of the 
caller on the stack, switches into the address space of 

the callee with VMFUNC, picks a new stack inside the 
callee address space, and continues execution by call-
ing a callee dispatch function. Specifically, on the caller 
side, the trampoline first saves extended registers with 
the fxsave instruction, saves callee saved registers on 
the stack, and zeroes out all general registers that are 
not used to pass the arguments and all extended regis-
ters. After that, the domain boundary is switched with 
the vmfunc instruction. Inside the callee domain, the 
trampoline allocates a new stack from a pool of avail-
able stacks. If the EPT switching is used inside the 
kernel, the trampoline saves the values of the segment 
registers that can be freely changed by the caller and 
callee in ring 0.

Security of the Isolation Boundary
Unlike traditional interrupts and system cal ls, 
VMFUNC provides no support for defining an entry 
point in the callee domain. The next instruction after 
the vmfunc executes with the memory rights of the 
callee subsystem. The cross-domain invocation mech-
anism must ensure that the transition is safe, that is, 
all possible VMFUNC invocations lead to a set of 
well-defined entry points in the callee (and the caller on 
the return path) and that both the callee and the caller 
can securely initialize and restore their state.

Safety of the VMFUNC Instructions
Control-flow attacks inside the isolated subsystem allow 
an attacker to find executable byte sequences that form 
valid vmfunc instructions. If the virtual address after 

Figure 3. EPT switching with VMFUNC. 
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the VMFUNC instruction is mapped in the address 
space of another domain, an attacker can escape the iso-
lation boundary. To protect against such an attack, the 
isolation mechanism should enforce one of the follow-
ing two invariants (Invs):

	 Inv 1.a: Virtual address spaces of isolated domains do 
not overlap. 

	 Inv 1.b: No sequences of executable bytes can form a 
valid vmfunc instruction. 

Some solutions, like SkyBridge,3 rely on scanning 
and rewriting the executable space of the program to 
ensure that no byte sequences form valid VMFUNC 
instructions. In the case of ring 0 isolation, the attack 
surface for preventing unsafe VMFUNC instructions 
expands into user applications, which is exceptionally 
challenging in the face 
of dynamically loaded 
and just-in-time com-
piled code.1 Alterna-
tively, Inv 1.a ensures 
that i f  an isolated 
subsystem invokes a 
self-prepared vmfunc 
instruction anywhere 
in its address space, 
the next instruction 
causes a page fault. 
The enforcement of Inv 1.a requires control over the 
virtual address spaces of isolated subsystems.

Secure Saving and Restoring of State
After crossing the isolation boundary, the thread of 
execution does not trust any of the general-purpose and 
floating-point registers. In ring 3, segment registers can 
be trusted (write access to the segment registers has to 
be disabled in the kernel as well as all OS interfaces that 
allow updates to segment registers, for example, arch_
prctl on Linux). If, however, isolated code runs in  
ring 0, segment registers can be overwritten by untr
usted subsystems.

To provide a way of saving and restoring the state 
of each thread on cross-subsystem invocations, one 
needs to implement a thread-local store (TLS) that 
allows saving and restoring state, that is, TLS can store 
a per-thread pointer to its stack where the thread’s 
state is saved. In ring 3, the TLS can be implemented 
by using one of the segment registers (fs or gs). Ring 
0 is more challenging. It is possible to implement TLS 
by relying on the fact that isolated subsystems can-
not change their page table hierarchy (see Inv 4 later), 
which can be updated only by the hypervisor. Spe-
cifically, it is possible to utilize two pages mapped at 

well-known locations inside each subsystem. The first 
page provides an identifier of the currently execut-
ing thread, thread id. This page is shared across all 
isolated subsystems and provides an efficient way to 
access thread id. The part of the trusted computing 
base (TCB) that performs a context switch updates 
the current thread identifier, a change that is imme-
diately reflected in all subsystems. The second page, 
state page, is private to each subsystem and allows 
it to locate TLS regions inside the subsystem. The 
call-gate code first locates the stack of the current pro-
cess through its thread identifier and then restores its 
register state.

cr3 Remapping for EPT Switch
The VMFUNC instruction does not change the root 
of the page table hierarchy, that is, the value of the cr3 

register. The physical 
address of the root of 
the page table should 
be valid at the same 
physical address on 
both sides of the iso-
lation boundary. In 
many isolation sce-
narios, it is possible 
to control the layout 
of the address space 
and the address of the 

page table directory (PTD) inside an isolated subsystem. 
For example, an in-process isolation solution can rely on 
a single address space and use the same cr3 value across 
all isolated subsystems. In such a case, the isolation sub-
system has to enforce the following invariant:

	 Inv 2.a: The physical address of the root of the guest 
page table is identical in all isolated domains. 

However, in some cases, for example, when isola-
tion is applied to kernel subsystems, the need to pro-
vide backward compatibility with the rest of the system 
prevents one from controlling the physical address of 
the page table root. Specifically, in a typical kernel, indi-
vidual processes and kernel threads execute on separate 
page tables and have different page table roots. When a 
thread of execution enters the isolated domain in the ker-
nel, one needs to ensure that cr3 is valid on both sides 
of the isolation boundary. One way to achieve this is to 
ensure that for each pair of communicating subsystems, 
the physical page that contains the PTD is mapped twice 
by the EPT (Figure 4). The first mapping is the original 
EPT mapping used by the isolated subsystem. The sec-
ond mapping is created dynamically when the thread of 
execution that uses a different PTD address in the caller 

Multiple EPTs can map disjoint subsets of 
machine pages, isolating the address spaces 

of mistrusting subsystems.
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subsystem enters the callee for the first time. Since the 
physical address of the PTD is the same in both the caller 
and the callee, the thread can perform a VMFUNC tran-
sition between the two domains.

To make sure that such double mapping is possible 
(note that the isolation subsystem has no control over 
the placement of the page table root), it is possible to 
enforce the following invariant:

	 Inv 2.b: The physical address spaces of isolated domains 
and the kernel must not overlap. 

This guarantees that the GPA that contains the root 
of the page table inside an isolated subsystem is not used 
in any other subsystems, and hence, can be remapped 
into the host physical page that contains the root of the 
page table on the other side.

Isolating Privileged Kernel Code
Historically, hardware isolation mechanisms focused on 
the isolation of user-level code. Isolation of privileged 
code remains a challenge in the face of a sensitive hard-
ware state that is accessible from ring 0. Historically, the 
kernel isolation solutions either moved isolated code out-
side of ring 0 to ring 3 or relied on techniques of language 
safety or SFI to control access to privileged instructions. 
VMFUNC, however, provides a unique point in the 
design space of isolation solutions by executing the sys-
tem under the control of a hypervisor.4 Virtualized exe-
cution allows mediating access to the sensitive state with 
only minimal overhead but requires careful handling of 
interrupt transitions to avoid severe performance penal-
ties on exits from the VT-x nonroot context.

Protecting the Sensitive State
The efficient isolation of kernel code relies on the 
assumption that both the core kernel and isolated 

subsystems execute with ring 0 privileges. This allows 
one to avoid expensive privilege-level transitions on 
invocations into isolated subsystems. In turn, an iso-
lated subsystem that runs in ring 0 has access to all 
sensitive hardware registers, for example, control reg-
isters that alter the behavior of the hardware, like the 
root of the page table stored in cr3. To ensure isola-
tion, the isolation boundary should enforce the fol-
lowing invariant: 

	 Inv 3: Access to the sensitive state within the isolated 
domain is mediated by the hypervisor. 

To implement Inv 3, the guest VM has to be con-
figured to exit into the hypervisor on the following 
instructions that access the sensitive state:

1.	 stores to the control registers (cr0, cr3, and cr4)
2.	 stores to the extended control register, xcr0 
3.	 reads and writes of MSRs with rdmsr and wrmsr 

instructions
4.	 reads and writes of I/O ports with in and out 

instructions
5.	 access to debug registers
6.	 loads and stores of descriptor tables, that is, GDT, 
LDT, IDT, and TR registers. 

Upon exit, the hypervisor validates if the exit hap-
pens from the legitimate use of these instructions 
in the nonisolated kernel, and if so, emulates the 
exit-causing instruction. Empirical evaluation dem-
onstrates that VM exits caused by such mediation 
have little impact on realistic system workloads.4 Exits 
due to interrupts, on the other hand, are frequent 
in I/O-intensive workloads (we discuss a practical 
approach for addressing this overhead with exitless 
interrupt handling later).

Figure 4. cr3 remapping. The machine page that contains the root of the page table inside B is remapped, so threads T1 
and T2 perform a VMFUNC transition from A and B. 
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Locking the Isolated Domain’s Address Space
Inv 1.a (virtual address spaces across isolated subsys-
tems do not overlap) becomes challenging in the privi-
leged ring 0 environment—privileged code can modify 
the page table to create an overlapping mapping. The 
isolation subsystem has to ensure that isolated subsys-
tems cannot modify the layout of their address space, 
or specifically: 

	 Inv 4: Isolated domains have read-only access to their 
page table. 

Enforcing this invariant without adding performance 
overhead is surprisingly hard. A naive approach is to 
disable updates to the cr3 register that holds the root of 
the page table hierarchy along with updates to pages of 
the page table itself by mapping them read-only in the 
EPT. This implies that the entire page table hierarchy 
cannot be modified. Though this enforces Inv 4, it also 
causes a prohibitive number of exits into the hypervi-
sor when the hardware tries to update the accessed and 
dirty bits in the page table of the isolated subsystem.

Fortunately, an important observation is that accessed 
and dirty bits on the page table pages are updated 
by the CPU via the GPA, that is, hardware walks the 
EPT to resolve the GPA address of the host physical 
page of the page table page that contains the accessed 
and dirty bits. To avoid exits on hardware accesses, it 
is possible to leave all pages of the page table mapped 
with writable permissions in the EPT but enforce 
read-only access to those pages in the guest page table  
(Figure 5). This way, when the CPU updates the 
accessed and dirty bits, the access is allowed by the EPT, 
but the write access from the guest system results in a 
page fault when the kernel tries to update it through the 
guest virtual address. 

A natural question is: If a page table is read-only inside 
an isolated subsystem, how can it grow its address space 
when allocating pages from a non-isolated kernel? An 
elegant solution is to create a large virtual address space 
upfront when the subsystem starts, that is, create a page 
table that maps GVAs to GPAs but keeps the physical 
pages unmapped and not backed by host physical pages in 
the EPT. This way, the subsystem never updates its page 
table. Instead, additional memory is mapped by an update 
in the EPT to create a mapping of a guest physical page to 
a host physical page.

Exitless Interrupt Handling
A natural concern with VMFUNC-based isolation 
is an increased cost of interrupt delivery. While the 
VT-x interface can be configured to avoid exits into the 
hypervisor on interrupt delivery, in most cases, this is 
unsafe—an isolated subsystem cannot be trusted to 

handle the interrupt. A naive approach is to trigger an 
exit into the hypervisor and then reinject the interrupt 
into the guest kernel.

Fortunately, it is possible to avoid the excessive 
overhead of interrupt delivery by switching (with 
VMFUNC) into the core nonisolated kernel instead 
of exiting into the hypervisor if the interrupt is deliv-
ered while one of the isolated subsystems is running.4 
Specifically, it is possible to allow delivery of interrupts 
directly into the VT-x nonroot guest without exiting into 
the hypervisor and also allow interrupt delivery into an 
isolated subsystem but through a protected interrupt 
descriptor table (IDT) configured by the nonisolated 
kernel. To enable interrupt delivery into the isolated 
subsystem, the IDT, global descriptor table, task-state 
segment (TSS), and interrupt handler trampoline are 
mapped by both the nonisolated kernel (EPTK) and the 
isolated subsystem (EPTI).

When the system receives an interrupt, the ker-
nel follows a normal interrupt delivery path, that is, 
the hardware saves the state of the currently execut-
ing thread on the stack, locates the interrupt handler 
through the IDT, and starts executing it. However, the 
interrupt handler that is controlled by the nonisolated 
kernel starts with a check of whether the execution is 
still inside the isolated subsystem, and if so, performs 
a VMFUNC transition back to the kernel. While con-
ceptually simple, the exitless interrupt delivery with the 
VMFUNC scheme requires several careful design deci-
sions to maintain the security of the isolation boundary 
as the isolated domain is running with ring 0 privileges. 

Interrupt Stack Table
Both nonisolated kernel and isolated subsystems exe-
cute with ring 0 privileges. Therefore, on interrupt, the 
CPU does not change the privilege level and continues 
executing on the same stack. Specifically, the CPU saves 
the trap frame on the stack pointed by the current ker-
nel stack pointer. This opens an opportunity for a trivial 
attack. A malicious subsystem configures the stack to 
point to a valid writable kernel memory and waits for 

Figure 5. Enforcing read-only access for the pages of the guest page table. The 
page table entry in gPL1 maps a page of the page table (gPL3) as read-only.  
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an interrupt. When an interrupt is delivered, the CPU 
saves the trap frame onto the stack, thereby overwriting 
the kernel memory.

To prevent such an attack and to make sure that an 
interrupt is always executed on a valid stack, it is pos-
sible to utilize a hardware mechanism, interrupt stack 
table (IST), which unconditionally switches the stack 
to a preconfigured address. With IST, one can con-
figure the IDT on a per-handler basis to handle the 
interrupt either using a traditional interrupt delivery 
mechanism or unconditionally switching to a precon-
figured IST stack even if the privilege level remains 
unchanged. Each IDT entry has 8 b to specify one 
of the seven available IST stacks. The Linux kernel 
already uses the IST mechanism for handling non-
maskable interrupts (NMIs), double-fault, debug, and 
machine-check exceptions.

To protect the kernel from this attack, one has to 
configure two additional IST stacks for the execution 
of synchronous exceptions and asynchronous inter-
rupts (Figure 6). Upon receiving an interrupt, the 
hardware switches to a preconfigured IST stack from 
the IST table. First, the IST stack is used to execute a 
minimal interrupt handler trampoline that is mapped 
in both nonisolated kernels and all isolated subsys-
tems. The trampoline checks whether the system 
is running inside the kernel or in one of the isolated 
subsystems and switches to the kernel’s EPT (EPTK), 
if needed. Since no register is trusted upon entering 
the kernel with VMFUNC, the isolation mechanism 
securely restores the system’s state from the TLS 
described previously (it is possible to restore the gs 
register used by the kernel to maintain per-CPU data 
structures and the stack pointer register that points to 
the kernel stack). 

After that, the saved interrupt frame is copied to 
the regular kernel stack, which is used to continue 
the execution of the interrupt handler through the 
normal interrupt-handling path. Note that the kernel 

can reenable interrupts at this point as the IST stack 
is no longer used for the current interrupt. On the 
interrupt-return path, the kernel switches back to 
the isolated domain if required. If needed, the han-
dler copies the exception frame back to the IST stack 
(since only the IST stack is mapped inside the isolated 
subsystem), switches back to the EPT of the isolated 
subsystem, EPTI , and returns from the interrupt with 
the regular iret instruction.

The aforementioned interrupt delivery scheme 
relies on the possibility of disabling subsequent inter-
rupts on all interrupt transitions—this ensures that the 
IST stack will not be overwritten until the interrupt 
frame is copied out onto the normal kernel stack. Any-
time during the processing of the interrupt, an NMI can 
be delivered. One has to configure a separate IST stack 
for the NMI to prevent overwriting the state of the pre-
vious interrupt frame on the IST.

To reliably detect whether the interrupt handler is 
running inside the kernel or an isolated subsystem, it 
is possible to utilize a special “state” page, state page, 
that is mapped by both the kernel and the isolated sub-
system at the same physical address. Inside the kernel, 
the state page has a flag set to true and false in all iso-
lated subsystems.

Alternative VMFUNC Isolation Schemes
SeCage was the first system to demonstrate the use of 
EPT switching for isolation.5 While certain aspects of 
the implementation are not publicly available, SeCage 
ensures virtual address space isolation and control 
over a subset of the guest page table to ensure the 
safety of the isolation boundary. Skybridge, on the 
other hand, leverages binary rewriting techniques sim-
ilar to ERIM to prevent a malicious subsystem from 
crafting unprotected instances of the vmfunc instruc-
tion.3 EPTI leverages VMFUNC to defend against 
meltdown attacks by isolating the user and kernel 
address spaces.6 EPTI develops novel techniques for 

Figure 6. Data structures involved in exitless interrupt delivery (Linux kernel). EPTk: extended Page table (kernel); IDT: interrupt descriptor 
table; TSS: task state segment.
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ensuring read-only access to the page table hierarchy 
within the guest system that we use in our work on 
lightweight virtualized domains (LVDs).4 Concentrat-
ing on the performance aspect of VMFUNC isolation, 
MemSentry leaves most VMFUNC-related attacks 
out of scope.15

V MFUNC implements a unique design spot in 
the space of hardware isolation mechanisms. 

Several limitations hinder the immediate adoption 
of VMFUNC-based isolation solutions. First, isola-
tion with VMFUNC requires several nonstandard 
invariants that control the layout of both virtual and 
physical address spaces across isolated subsystems. 
While the enforcement of these invariants is pos-
sible in experimental research prototypes, it is not 
clear whether such complexity is practical for pro-
duction systems.

Second, EPT switching has a higher overhead com-
pared to a simpler tag-based MPK. Updating the tag 
with the wrpkru instruction takes only 20–26 cycles, 
while the execution of vmfunc takes 109–147 cycles. 
Furthermore, EPT switching has no support for 
zero-copy communication, which is naturally enabled 
in tag-based solutions like MPK and MTE and isola-
tion schemes based on PAC (passing a pointer to a 
memory region required reencrypting the pointer for 
the callee subsystem).

Third, another limitation of VMFUNC-based isola-
tion schemes is the requirement to execute the system 
under the control of a hypervisor. While the over-
heads of virtualized execution can be addressed,4 it is 
not clear if support for nested virtualization required 
to execute a VMFUNC-isolated system in a modern 
de facto virtualized cloud environment can be pro-
vided efficiently. More important, VMFUNC inher-
ently requires trust in the hypervisor responsible for 
maintaining EPTs. Unfortunately, this goes against the 
recent industry trend to remove the hypervisor from 
the TCB through support for hardware-encrypted 
VMs like AMD SEV and Intel TDX.

On the other hand, compared to other isolation 
mechanisms, VMFUNC provides several unique advan-
tages. First, in contrast to a tag-based mechanism like 
MPK and MTE, VMFUNC relies on the switching 
of an EPT. An obvious advantage of this approach is 
the ability to implement isolation without additional 
mechanisms required to ensure the safety of unprivi-
leged vmfunc instructions, that is, without binary 
rewriting required to ensure the absence of malicious 
wrpkru instructions or enforcing a specific MTE tag. 

Second, in contrast to tag-based solutions that are 
inherently limited to a small number of isolated domains 

due to the limited number of bits that can hold the cur-
rent tag (in either unused bits of the page table entries 
or unused bits of the register), VMFUNC can support 
a large number of isolated domains. (While the current 
size of the EPT table is limited to 512 domains, there is 
no inherent architectural limitation that would prevent 
increasing this limit.) 
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