
IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

16	 May/June 2023	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/23©2023IEEE

The Opportunities and Limitations
of Extended Page Table Switching
for Fine-Grained Isolation

Vikram Narayanan  and Anton Burtsev | University of Utah

Extended Page Table switching with VMFUNC is a hardware isolation mechanism available in Intel CPUs.
VMFUNC is attractive for low overhead and the possibility to isolate privileged kernel code. However,
many careful design decisions are needed to ensure the security of the isolation boundary.

A steady increase in the number of security attacks
(combined with a growing level of attack com-

plexity and automation) triggered a renewed interest
in hardware support for isolation. After decades of rela-
tively slow adoption, recent generations of commod-
ity CPUs introduced a range of new hardware isolation
mechanisms. Intel Memory Protection Keys (MPKs)
and Extended Page Table (EPT) switching with vir-
tual machine (VM) functions (VMFUNC) develop
support for memory isolation with overheads gradually
approaching the overhead of a function call.1,2,3,4

Both Intel and ARM architectures explore hard-
ware support for software fault isolation (SFI).
The latest ARM CPUs introduce 16-B-granularity
memory isolation with memory tagging extensions
(MTEs). MTE can potentially enable low-overhead
bounds checks and zero-copy exchange of data between
isolated subsystems. Moreover, both ARM and x86
provide support for control-flow integrity (CFI) and
stack protection.

While making an appealing promise to enable practi-
cal fine-grained isolation, the aforementioned mecha-
nisms require a collection of careful design decisions
to enforce the security of the isolation boundary. For
example, isolation with MPKs relies on either the
binary rewriting of all wrpkru instruction instances1 or
dynamic validation with hardware breakpoints2 (the
wrpkru instruction updates a register that holds the
current tag and hence controls the boundaries of acces-
sible memory).

Understanding the design choices, security require-
ments, and limitations of modern hardware isolation
mechanisms is critical for deploying efficient and secure
isolation solutions. Similarly, it is essential for providing
informed feedback to hardware engineers responsible
for the next generation of hardware isolation primitives
in commodity CPUs.

This article takes a deep dive into the design chal-
lenges of implementing a secure isolation bound-
ary on top of one of the modern hardware isolation
mechanisms: EPT switching with VMFUNC. We base
our analysis on our experience of implementing the
fine-grained isolation of Linux kernel modules with

Digital Object Identifier 10.1109/MSEC.2023.3251385
Date of current version: 26 April 2023

Authorized licensed use limited to: The University of Utah. Downloaded on June 11,2023 at 07:26:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6274-9242
https://orcid.org/0000-0001-8769-8373

www.computer.org/security� 17

EPT switching4 as well as on an exploration of several
other VMFUNC-based systems.3,5,6

We first survey recent hardware isolation mecha-
nisms, trying to highlight their relative advantages and
limitations, and then provide a detailed discussion of
principles and mechanisms involved in implement-
ing a VMFUNC-based isolation boundary. Like other
hardware isolation mechanisms, VMFUNC provides a
unique mix of advantages and limitations.

A distinct advantage of VMFUNC is its ability to
ensure the security of the isolation boundary (and spe-
cifically, the safety of vmfunc instructions) through a
collection of invariants that control the layout of virtual
and physical address spaces as opposed to the binary
rewriting and techniques of SFI required to protect
other isolation mechanisms, for example, Intel MPK,
ARM MTE, and ARM pointer authentication (PAC).
On the other hand, VMFUNC requires the execution
of a system under the control of the hypervisor that can
be restrictive due to the need to support nested virtual-
ization in a virtualized data center. To further highlight
the unique properties of VMFUNC-based solutions,
we explore how EPT switching can be used for the
isolation of a privileged ring 0 kernel code. By execut-
ing the system under the control of a hypervisor, a
VMFUNC-based solution can control access to a sensi-
tive hardware state at the hypervisor level [that is, control
whether an isolated subsystem can access privileged con-
trol and model-specific registers (MSRs), input–output
(I/O) ports, etc.]. We analyze additional mechanisms
that are needed for isolating code that executes with ring 0
privileged, that is, ensuring the safety of cross-subsystem
invocations, providing the safe and efficient handling of
interrupts, etc.

The Landscape of Modern Hardware
Isolation Primitives
In the last decade, commodity CPUs introduced a diverse
range of hardware primitives aimed at the support of
practical fine-grained memory isolation. While clearly
a leap forward, existing hardware mechanisms rely on a
complex combination of software techniques required to
ensure the integrity of the isolation boundary. No matter
which mechanism is used, isolation depends on complex
design, engineering, and performance tradeoffs.

Intel MPK
MPKs are an isolation mechanism available on Intel
CPUs since Skylake. MPK allows one to enforce isolation
within a single address space (Figure 1), that is, a single
page table, by tagging individual pages with a 4-b protec-
tion key (saved in the unused bits of the page table entry).
A special register, pkru, holds a bitmap that allows access

to a combination of tags (that is, any combination from
none to all is possible by setting individual bits in the bit-
map). The pkru register specifies the access rights for
each protection key with 2 b per key (access disable and
write disable). Read or write access to a page is allowed
only if the value of the pkru register matches the tag of
the page. Crossing between protection domains is per-
formed by writing a new tag value into the pkru register
with an unprivileged wrpkru instruction.

Limitations. Isolation with MPK requires control over
all wrpkru instructions throughout the code of the
program to prevent unauthorized transitions between
address spaces. In the past, control over wrpkru was
demonstrated with either binary rewriting1 or dynamic
validation of all wrpkru instructions with hardware
breakpoints.2 Also, MPK enforces checks only on data
accesses but does not limit control-flow transitions.

Moreover, similar to other tag-based solutions (for
example, ARM MTE), MPK is limited to only 16 pro-
tection domains. libmpk provides a software abstrac-
tion for overcoming this limitation by virtualizing the
keys, but it is expensive as the application programming
interface involves several syscalls.7 Extended protection
keys virtualize the number of keys by combining MPK
with EPT switching8 but at the cost of the additional
complexity and overheads of the VMFUNC-based
approaches that we discuss later.

ARM MTE
Starting with ARMv8.3-A, ARM systems-on-chip (SoCs)
introduce support for MTEs that allow partitioning the

Figure 1. Domain isolation using MPK. Page table entries store a 4-b tag.
The pkru register controls that tags can be accessed at the moment (that is, in
the figure read and write access, to pages with tag 4 is allowed). PKEY: protection
key; PKRU: protection-key rights register for user pages; WD: write disable;
AD: access disable.

Virtual Da Da Db Db

Page Table

Domain A Domain B

PKEY31 PKEY4 PKEY0

31 4 0

PKRU W
D

A
D

b0100

b0100

b1000

b1000

Authorized licensed use limited to: The University of Utah. Downloaded on June 11,2023 at 07:26:41 UTC from IEEE Xplore. Restrictions apply.

18	 IEEE Security & Privacy� May/June 2023

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

address space into 16-B regions that are colored with
one of the 16 tags. The hardware maintains a table that
stores mapping between addresses and tags, allowing
access to the region only if the tag of the pointer (the
tag stored in the upper bits of the pointer) matches the
tag of the memory region. MTE itself does not directly
support isolation—the attacker can change the upper
bits of the pointer that contain the tag. To enforce isola-
tion, it is possible to combine MTE with the techniques
of SFI, that is, rely on binary rewriting or compile-time
instrumentation to enforce a specific tag on every load
and store operation.

Limitations. Two overheads impact the performance
of MTE-based isolation solutions. First, the enforce-
ment of hardware tags relies on SFI techniques, which,
in turn, require the control of not only load and store
operations (to restrict access to the memory of the iso-
lated subsystem) but also control-flow enforcement.
SFI solutions were demonstrated to achieve an over-
head of only a few percent but only with one isolated
subsystem.9 The isolation of multiple subsystems and
exchange of objects across the isolation boundaries
sharply degrade performance.

Second, similar to Intel MPK, ARM MTE is limited
to only 16 isolated subsystems due to the space limi-
tation of unused pointer bits. HAKC combines MTE
with ARM PAC to extend the number of possible tags10
but provides no practical protection as it fails to enforce
temporal safety (we will discuss this later).

ARM PAC
Starting with ARMv8.3-A , ARM SoCs support
cr y ptographic PAC. PAC implements the ability

to cryptographically sign a pointer and store the sig-
nature in the “unused” upper bits of the pointer (Fig-
ure 2). The signature is generated from 1) the pointer
value, 2) a secret key protected by the operating sys-
tem (OS), and 3) a 64-b program-defined “signing
context” that allows the isolation scheme to restrict
the use of a pointer in a custom way, for example,
allow using the pointer only if the value of the stack
pointer (sp) is identical at the moment of signing and
authenticating the signature. A signed pointer can-
not be used directly but instead has to be authenti-
cated with the same secret key and context. If either
the pointer, its signature, or the context is different
from the values used during signing, the authentica-
tion results in an invalid pointer value that triggers a
hardware exception when used. However, this leaves
room for an attacker to make repeated guesses at the
correct PAC value for this address if the authenticated
pointer is not immediately used.

ARMv8.6-A introduced faulting PAC (FPAC), which
generates an exception when an authentication failure
occurs instead of during use. PAC is a powerful mecha-
nism that can be used to enforce control flow, spatial and
temporal11,12 safety, and the isolation of subsystems.10,13

Isolation with PAC requires maintaining metadata
about each memory object, that is, the size, type, and
liveness of an object that are used to enforce the type,
memory, temporal safety, and access rights for a cur-
rently executing isolated subsystem. Compiler instru-
mentation is used to generate instructions that check
the memory and temporal safety (the bounds, type,
and liveness of an object) on each memory access
along with permission to access the object. Metadata
can be saved next to the object itself11 or in a sepa-
rate memory region.12 HAKC tries to build a PAC
isolation scheme that can avoid metadata lookups
altogether by combining PAC with ARM MTE. Spe-
cifically, HAKC tags each memory object with an
MTE tag that allows it to enforce bounds checks.10
Unfortunately, in an attempt to avoid metadata look-
ups, HAKC has no mechanism to check the liveness
of objects on the heap. It is therefore prone to a sim-
ple attack in which an attacker sprays the heap by allo-
cating a large number of objects that it subsequently
deallocates while preserving pointers to these objects.
Since HAKC does not perform a liveness check, the
attacker can later use saved pointers to access objects
that are reallocated on the heap.

Limitations. Similar to SFI approaches, PAC suffers from
the overheads of executing additional instructions required
to look up and validate metadata, check pointer signa-
tures, etc. on each memory access.10,11,12 For example,
the average runtime overhead of PACMem is 68.73%.12

Figure 2. Spatiotemporal memory safety with PAC. PACMem uses the PAC
value from a sealed pointer as an index into the metadata table that contains
a random context (to unseal the pointer), a base address, and the size of the
pointer. If the bounds checks and authentication pass, access through the
pointer is allowed. When the object is deallocated, the entry in the metadata
table is set to zero.

PAC

XPACD

<random_ctx, base_addr, object_sz>

Metadata Table

offset > 0 && access_sz > 0
&& offset + access_sz

<= object_sz

Bounds Check

Address

Address

Base Address

offset

PAC

Raw Pointer (Without Seal)

Pointer (With Seal)

Authorized licensed use limited to: The University of Utah. Downloaded on June 11,2023 at 07:26:41 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 19

Additionally, existing PAC-based isolation schemes lack
strong security guarantees. For example, PACMem can be
attacked due to the lack of a strong source of randomness
as well as a potential of a hash collision.12

Intel CET
Intel introduced control-flow enforcement technology
(CET), a hardware feature to mitigate return-oriented
programming (ROP)-style attacks (ROP, jump-oriented
programming, and call-oriented programming) by
enforcing coarse-grained CFI. It consists of 1) a shadow
stack (SHSTK) to protect the return addresses that can
be corrupted by buffer-overflow attacks and 2) an indi-
rect branch tracking that protects the forward control
flow of the program.
SHSTK records the
return addresses in a
hardware-protected
stack region along
with the regular stack;
when the ret instruc-
tion is executed, the
return addresses are
compared to generate
an exception if there
is a mismatch. SHSTK
provides write-protected pages (using an unused com-
bination of read, write, and dirty bits in the page table)
to store return addresses. For error handling, it also
provides an instruction to write into the shadow
stack (WRSS).

Limitations. While by itself CET is not designed to
provide the isolation of subsystems, it is possible to
utilize a hardware-protected shadow stack memory to
provide a memory isolation abstraction.14 CETIS14
utilizes the SHSTK mechanism and the WRSS instruc-
tion to protect the data of an isolated subsystem.
Though CETIS offers write protection across sub-
systems, the data in the protected region can be arbi-
trarily read.

Intel Sub-Page Protection
Intel Sub-Page Protection (SPP) provides a mechanism
to control the permissions of a guest physical page at a
finer granularity. The EPT page table is complemented
with a subpage permission table, a structure similar to
a page table, that allows the write accesses to be con-
trolled at a 128-B subpage granularity.

Limitations. SPP controls only write accesses and does not
prevent reads. Additionally, similar to VMFUNC, SPP
requires that the isolated domains are running in VT-x
nonroot context and undergo address translation through

EPT. By controlling the layout of data structures shared
between the two domains (for example, the kernel and
the isolated driver), one could implement SPP protection
on top of the existing VMFUNC mechanism we described
previously to provide read-only and controlled-write
accesses to regions of memory in other domains.

Intel VMFUNC
EPT switching with VMFUNC was introduced in the
Skylake generation of Intel CPUs. VMFUNC allows
a VM guest to change the root of the EPT (Figure 3).
The hypervisor configures a table with available EPT
root pointers, and the vmfunc instruction can select
one of the pointers by providing an index. The vmfunc

i s an unpriv i leged
instruction and can
be invoked inside the
V T-x nonroot con-
text at any privilege
level. The vmfunc
instruction does not
change any of the reg-
isters (besides advanc-
ing the instruction
pointer), but the guest
physical addresses

(GPAs) are translated to host physical addresses
(HPAs) through a new EPT. The execution continues
with the next instruction, but it is fetched through the
new EPT.

The execution of the VMFUNC instruction does
not change the value of the cr3 control register that con-
tains the physical address of the guest page table root.
However, switching to a different EPT might change the
mapping of GPAs to HPAs and may alter the contents
of the guest page table. Since modern CPUs support
tagging of the translation lookaside buffer using virtual
processor identifiers, the vmfunc instruction is relatively
fast—the cost of changing the isolation boundary can
be as low as 109–147 cycles2,3,4,15 plus the overhead of
performing a cross-domain invocation, that is, saving
and restoring general and extended registers, selecting
a callee stack, etc. Although Intel patents describe EPT
switching as a mechanism to provide the isolation of
subsystems within a guest VM, implementing a secure
isolation boundary with VMFUNC is challenging and
requires multiple careful design decisions. Next, we dis-
cuss a collection of principles and mechanisms required
to secure an EPT-based isolation boundary.

Challenges of Isolation With
EPT Switching
Lightweight EPT switching allows for a conceptually
simple isolation approach. Multiple EPTs can map

EPT switching with VMFUNC was
introduced in the Skylake generation

of Intel CPUs.

Authorized licensed use limited to: The University of Utah. Downloaded on June 11,2023 at 07:26:41 UTC from IEEE Xplore. Restrictions apply.

20	 IEEE Security & Privacy� May/June 2023

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

disjoint subsets of machine pages, isolating the address
spaces of mistrusting subsystems. To switch between
the address spaces, a call-gate page with the vmfunc
instruction is mapped by a pair of communicating
EPTs. Naturally, isolation with EPT relies on the exe-
cution of isolated subsystems inside VT-x nonroot
context controlled by a hypervisor. This, however, can
be transparently achieved for both unprivileged user
code (with a minimal hypervisor like Dune16 that
transparently executes user processes as VT-x nonroot
contexts) and kernel subsystems (with a late-launch
hypervisor that deprivileges the kernel in a manner
similar to a rootkit4).

Cross-Subsystem Invocations
EPT switching provides a natural mechanism for imple-
menting cross-subsystem invocations without exiting
into the OS kernel or hypervisor. During the invocation,
the execution can continue on the same thread (albeit on
a new stack) but in a different address space provided by
the new EPT mappings. As vmfunc advances the pro-
gram counter to the next instruction, this next instruction
must be valid in the address space of the callee. To make
sure that execution can continue upon a switch, one can
map a special trampoline page in both address spaces at
the same virtual address. While the page can contain dif-
ferent code in two address spaces, the callee’s entry point
must follow the address of the vmfunc instruction in the
caller’s address space.

A typical call-gate trampoline saves the state of the
caller on the stack, switches into the address space of

the callee with VMFUNC, picks a new stack inside the
callee address space, and continues execution by call-
ing a callee dispatch function. Specifically, on the caller
side, the trampoline first saves extended registers with
the fxsave instruction, saves callee saved registers on
the stack, and zeroes out all general registers that are
not used to pass the arguments and all extended regis-
ters. After that, the domain boundary is switched with
the vmfunc instruction. Inside the callee domain, the
trampoline allocates a new stack from a pool of avail-
able stacks. If the EPT switching is used inside the
kernel, the trampoline saves the values of the segment
registers that can be freely changed by the caller and
callee in ring 0.

Security of the Isolation Boundary
Unlike traditional interrupts and system cal ls,
VMFUNC provides no support for defining an entry
point in the callee domain. The next instruction after
the vmfunc executes with the memory rights of the
callee subsystem. The cross-domain invocation mech-
anism must ensure that the transition is safe, that is,
all possible VMFUNC invocations lead to a set of
well-defined entry points in the callee (and the caller on
the return path) and that both the callee and the caller
can securely initialize and restore their state.

Safety of the VMFUNC Instructions
Control-flow attacks inside the isolated subsystem allow
an attacker to find executable byte sequences that form
valid vmfunc instructions. If the virtual address after

Figure 3. EPT switching with VMFUNC.

Physical

Virtual

Machine

Physical

Virtual

VT-x Non-root

Subsystem A Subsystem B

vmfunc

PTDA PTDB

cr3 EPTB MappingEPTA Mapping

EPT List

EPTA EPTB

vmfunc

Authorized licensed use limited to: The University of Utah. Downloaded on June 11,2023 at 07:26:41 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 21

the VMFUNC instruction is mapped in the address
space of another domain, an attacker can escape the iso-
lation boundary. To protect against such an attack, the
isolation mechanism should enforce one of the follow-
ing two invariants (Invs):

	 Inv 1.a: Virtual address spaces of isolated domains do
not overlap.

	 Inv 1.b: No sequences of executable bytes can form a
valid vmfunc instruction.

Some solutions, like SkyBridge,3 rely on scanning
and rewriting the executable space of the program to
ensure that no byte sequences form valid VMFUNC
instructions. In the case of ring 0 isolation, the attack
surface for preventing unsafe VMFUNC instructions
expands into user applications, which is exceptionally
challenging in the face
of dynamically loaded
and just-in-time com-
piled code.1 Alterna-
tively, Inv 1.a ensures
that i f an isolated
subsystem invokes a
self-prepared vmfunc
instruction anywhere
in its address space,
the next instruction
causes a page fault.
The enforcement of Inv 1.a requires control over the
virtual address spaces of isolated subsystems.

Secure Saving and Restoring of State
After crossing the isolation boundary, the thread of
execution does not trust any of the general-purpose and
floating-point registers. In ring 3, segment registers can
be trusted (write access to the segment registers has to
be disabled in the kernel as well as all OS interfaces that
allow updates to segment registers, for example, arch_
prctl on Linux). If, however, isolated code runs in
ring 0, segment registers can be overwritten by untr
usted subsystems.

To provide a way of saving and restoring the state
of each thread on cross-subsystem invocations, one
needs to implement a thread-local store (TLS) that
allows saving and restoring state, that is, TLS can store
a per-thread pointer to its stack where the thread’s
state is saved. In ring 3, the TLS can be implemented
by using one of the segment registers (fs or gs). Ring
0 is more challenging. It is possible to implement TLS
by relying on the fact that isolated subsystems can-
not change their page table hierarchy (see Inv 4 later),
which can be updated only by the hypervisor. Spe-
cifically, it is possible to utilize two pages mapped at

well-known locations inside each subsystem. The first
page provides an identifier of the currently execut-
ing thread, thread id. This page is shared across all
isolated subsystems and provides an efficient way to
access thread id. The part of the trusted computing
base (TCB) that performs a context switch updates
the current thread identifier, a change that is imme-
diately reflected in all subsystems. The second page,
state page, is private to each subsystem and allows
it to locate TLS regions inside the subsystem. The
call-gate code first locates the stack of the current pro-
cess through its thread identifier and then restores its
register state.

cr3 Remapping for EPT Switch
The VMFUNC instruction does not change the root
of the page table hierarchy, that is, the value of the cr3

register. The physical
address of the root of
the page table should
be valid at the same
physical address on
both sides of the iso-
lation boundary. In
many isolation sce-
narios, it is possible
to control the layout
of the address space
and the address of the

page table directory (PTD) inside an isolated subsystem.
For example, an in-process isolation solution can rely on
a single address space and use the same cr3 value across
all isolated subsystems. In such a case, the isolation sub-
system has to enforce the following invariant:

	 Inv 2.a: The physical address of the root of the guest
page table is identical in all isolated domains.

However, in some cases, for example, when isola-
tion is applied to kernel subsystems, the need to pro-
vide backward compatibility with the rest of the system
prevents one from controlling the physical address of
the page table root. Specifically, in a typical kernel, indi-
vidual processes and kernel threads execute on separate
page tables and have different page table roots. When a
thread of execution enters the isolated domain in the ker-
nel, one needs to ensure that cr3 is valid on both sides
of the isolation boundary. One way to achieve this is to
ensure that for each pair of communicating subsystems,
the physical page that contains the PTD is mapped twice
by the EPT (Figure 4). The first mapping is the original
EPT mapping used by the isolated subsystem. The sec-
ond mapping is created dynamically when the thread of
execution that uses a different PTD address in the caller

Multiple EPTs can map disjoint subsets of
machine pages, isolating the address spaces

of mistrusting subsystems.

Authorized licensed use limited to: The University of Utah. Downloaded on June 11,2023 at 07:26:41 UTC from IEEE Xplore. Restrictions apply.

22	 IEEE Security & Privacy� May/June 2023

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

subsystem enters the callee for the first time. Since the
physical address of the PTD is the same in both the caller
and the callee, the thread can perform a VMFUNC tran-
sition between the two domains.

To make sure that such double mapping is possible
(note that the isolation subsystem has no control over
the placement of the page table root), it is possible to
enforce the following invariant:

	 Inv 2.b: The physical address spaces of isolated domains
and the kernel must not overlap.

This guarantees that the GPA that contains the root
of the page table inside an isolated subsystem is not used
in any other subsystems, and hence, can be remapped
into the host physical page that contains the root of the
page table on the other side.

Isolating Privileged Kernel Code
Historically, hardware isolation mechanisms focused on
the isolation of user-level code. Isolation of privileged
code remains a challenge in the face of a sensitive hard-
ware state that is accessible from ring 0. Historically, the
kernel isolation solutions either moved isolated code out-
side of ring 0 to ring 3 or relied on techniques of language
safety or SFI to control access to privileged instructions.
VMFUNC, however, provides a unique point in the
design space of isolation solutions by executing the sys-
tem under the control of a hypervisor.4 Virtualized exe-
cution allows mediating access to the sensitive state with
only minimal overhead but requires careful handling of
interrupt transitions to avoid severe performance penal-
ties on exits from the VT-x nonroot context.

Protecting the Sensitive State
The efficient isolation of kernel code relies on the
assumption that both the core kernel and isolated

subsystems execute with ring 0 privileges. This allows
one to avoid expensive privilege-level transitions on
invocations into isolated subsystems. In turn, an iso-
lated subsystem that runs in ring 0 has access to all
sensitive hardware registers, for example, control reg-
isters that alter the behavior of the hardware, like the
root of the page table stored in cr3. To ensure isola-
tion, the isolation boundary should enforce the fol-
lowing invariant:

	 Inv 3: Access to the sensitive state within the isolated
domain is mediated by the hypervisor.

To implement Inv 3, the guest VM has to be con-
figured to exit into the hypervisor on the following
instructions that access the sensitive state:

1.	 stores to the control registers (cr0, cr3, and cr4)
2.	 stores to the extended control register, xcr0
3.	 reads and writes of MSRs with rdmsr and wrmsr

instructions
4.	 reads and writes of I/O ports with in and out

instructions
5.	 access to debug registers
6.	 loads and stores of descriptor tables, that is, GDT,
LDT, IDT, and TR registers.

Upon exit, the hypervisor validates if the exit hap-
pens from the legitimate use of these instructions
in the nonisolated kernel, and if so, emulates the
exit-causing instruction. Empirical evaluation dem-
onstrates that VM exits caused by such mediation
have little impact on realistic system workloads.4 Exits
due to interrupts, on the other hand, are frequent
in I/O-intensive workloads (we discuss a practical
approach for addressing this overhead with exitless
interrupt handling later).

Figure 4. cr3 remapping. The machine page that contains the root of the page table inside B is remapped, so threads T1
and T2 perform a VMFUNC transition from A and B.

Physical

Machine

Subsystem A Subsystem B

Physical PhysicalPTD2

T2

PTDB

PTDB
Remapped

for T1

PTDB
Remapped

for T2

PTDB PTDB

PTDB

EPTA Mapping

PTD1

T1

Authorized licensed use limited to: The University of Utah. Downloaded on June 11,2023 at 07:26:41 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 23

Locking the Isolated Domain’s Address Space
Inv 1.a (virtual address spaces across isolated subsys-
tems do not overlap) becomes challenging in the privi-
leged ring 0 environment—privileged code can modify
the page table to create an overlapping mapping. The
isolation subsystem has to ensure that isolated subsys-
tems cannot modify the layout of their address space,
or specifically:

	 Inv 4: Isolated domains have read-only access to their
page table.

Enforcing this invariant without adding performance
overhead is surprisingly hard. A naive approach is to
disable updates to the cr3 register that holds the root of
the page table hierarchy along with updates to pages of
the page table itself by mapping them read-only in the
EPT. This implies that the entire page table hierarchy
cannot be modified. Though this enforces Inv 4, it also
causes a prohibitive number of exits into the hypervi-
sor when the hardware tries to update the accessed and
dirty bits in the page table of the isolated subsystem.

Fortunately, an important observation is that accessed
and dirty bits on the page table pages are updated
by the CPU via the GPA, that is, hardware walks the
EPT to resolve the GPA address of the host physical
page of the page table page that contains the accessed
and dirty bits. To avoid exits on hardware accesses, it
is possible to leave all pages of the page table mapped
with writable permissions in the EPT but enforce
read-only access to those pages in the guest page table
(Figure 5). This way, when the CPU updates the
accessed and dirty bits, the access is allowed by the EPT,
but the write access from the guest system results in a
page fault when the kernel tries to update it through the
guest virtual address.

A natural question is: If a page table is read-only inside
an isolated subsystem, how can it grow its address space
when allocating pages from a non-isolated kernel? An
elegant solution is to create a large virtual address space
upfront when the subsystem starts, that is, create a page
table that maps GVAs to GPAs but keeps the physical
pages unmapped and not backed by host physical pages in
the EPT. This way, the subsystem never updates its page
table. Instead, additional memory is mapped by an update
in the EPT to create a mapping of a guest physical page to
a host physical page.

Exitless Interrupt Handling
A natural concern with VMFUNC-based isolation
is an increased cost of interrupt delivery. While the
VT-x interface can be configured to avoid exits into the
hypervisor on interrupt delivery, in most cases, this is
unsafe—an isolated subsystem cannot be trusted to

handle the interrupt. A naive approach is to trigger an
exit into the hypervisor and then reinject the interrupt
into the guest kernel.

Fortunately, it is possible to avoid the excessive
overhead of interrupt delivery by switching (with
VMFUNC) into the core nonisolated kernel instead
of exiting into the hypervisor if the interrupt is deliv-
ered while one of the isolated subsystems is running.4
Specifically, it is possible to allow delivery of interrupts
directly into the VT-x nonroot guest without exiting into
the hypervisor and also allow interrupt delivery into an
isolated subsystem but through a protected interrupt
descriptor table (IDT) configured by the nonisolated
kernel. To enable interrupt delivery into the isolated
subsystem, the IDT, global descriptor table, task-state
segment (TSS), and interrupt handler trampoline are
mapped by both the nonisolated kernel (EPTK) and the
isolated subsystem (EPTI).

When the system receives an interrupt, the ker-
nel follows a normal interrupt delivery path, that is,
the hardware saves the state of the currently execut-
ing thread on the stack, locates the interrupt handler
through the IDT, and starts executing it. However, the
interrupt handler that is controlled by the nonisolated
kernel starts with a check of whether the execution is
still inside the isolated subsystem, and if so, performs
a VMFUNC transition back to the kernel. While con-
ceptually simple, the exitless interrupt delivery with the
VMFUNC scheme requires several careful design deci-
sions to maintain the security of the isolation boundary
as the isolated domain is running with ring 0 privileges.

Interrupt Stack Table
Both nonisolated kernel and isolated subsystems exe-
cute with ring 0 privileges. Therefore, on interrupt, the
CPU does not change the privilege level and continues
executing on the same stack. Specifically, the CPU saves
the trap frame on the stack pointed by the current ker-
nel stack pointer. This opens an opportunity for a trivial
attack. A malicious subsystem configures the stack to
point to a valid writable kernel memory and waits for

Figure 5. Enforcing read-only access for the pages of the guest page table. The
page table entry in gPL1 maps a page of the page table (gPL3) as read-only.

Physical

Read-only Mapping
Guest
cr3

gPL4 ...

gPL1gPL3

Read-write
EPT mapping

A/D

A/DMachine

Authorized licensed use limited to: The University of Utah. Downloaded on June 11,2023 at 07:26:41 UTC from IEEE Xplore. Restrictions apply.

24	 IEEE Security & Privacy� May/June 2023

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

an interrupt. When an interrupt is delivered, the CPU
saves the trap frame onto the stack, thereby overwriting
the kernel memory.

To prevent such an attack and to make sure that an
interrupt is always executed on a valid stack, it is pos-
sible to utilize a hardware mechanism, interrupt stack
table (IST), which unconditionally switches the stack
to a preconfigured address. With IST, one can con-
figure the IDT on a per-handler basis to handle the
interrupt either using a traditional interrupt delivery
mechanism or unconditionally switching to a precon-
figured IST stack even if the privilege level remains
unchanged. Each IDT entry has 8 b to specify one
of the seven available IST stacks. The Linux kernel
already uses the IST mechanism for handling non-
maskable interrupts (NMIs), double-fault, debug, and
machine-check exceptions.

To protect the kernel from this attack, one has to
configure two additional IST stacks for the execution
of synchronous exceptions and asynchronous inter-
rupts (Figure 6). Upon receiving an interrupt, the
hardware switches to a preconfigured IST stack from
the IST table. First, the IST stack is used to execute a
minimal interrupt handler trampoline that is mapped
in both nonisolated kernels and all isolated subsys-
tems. The trampoline checks whether the system
is running inside the kernel or in one of the isolated
subsystems and switches to the kernel’s EPT (EPTK),
if needed. Since no register is trusted upon entering
the kernel with VMFUNC, the isolation mechanism
securely restores the system’s state from the TLS
described previously (it is possible to restore the gs
register used by the kernel to maintain per-CPU data
structures and the stack pointer register that points to
the kernel stack).

After that, the saved interrupt frame is copied to
the regular kernel stack, which is used to continue
the execution of the interrupt handler through the
normal interrupt-handling path. Note that the kernel

can reenable interrupts at this point as the IST stack
is no longer used for the current interrupt. On the
interrupt-return path, the kernel switches back to
the isolated domain if required. If needed, the han-
dler copies the exception frame back to the IST stack
(since only the IST stack is mapped inside the isolated
subsystem), switches back to the EPT of the isolated
subsystem, EPTI , and returns from the interrupt with
the regular iret instruction.

The aforementioned interrupt delivery scheme
relies on the possibility of disabling subsequent inter-
rupts on all interrupt transitions—this ensures that the
IST stack will not be overwritten until the interrupt
frame is copied out onto the normal kernel stack. Any-
time during the processing of the interrupt, an NMI can
be delivered. One has to configure a separate IST stack
for the NMI to prevent overwriting the state of the pre-
vious interrupt frame on the IST.

To reliably detect whether the interrupt handler is
running inside the kernel or an isolated subsystem, it
is possible to utilize a special “state” page, state page,
that is mapped by both the kernel and the isolated sub-
system at the same physical address. Inside the kernel,
the state page has a flag set to true and false in all iso-
lated subsystems.

Alternative VMFUNC Isolation Schemes
SeCage was the first system to demonstrate the use of
EPT switching for isolation.5 While certain aspects of
the implementation are not publicly available, SeCage
ensures virtual address space isolation and control
over a subset of the guest page table to ensure the
safety of the isolation boundary. Skybridge, on the
other hand, leverages binary rewriting techniques sim-
ilar to ERIM to prevent a malicious subsystem from
crafting unprotected instances of the vmfunc instruc-
tion.3 EPTI leverages VMFUNC to defend against
meltdown attacks by isolating the user and kernel
address spaces.6 EPTI develops novel techniques for

Figure 6. Data structures involved in exitless interrupt delivery (Linux kernel). EPTk: extended Page table (kernel); IDT: interrupt descriptor
table; TSS: task state segment.

Core KernelIsolated Subsystem

EPTK = false

VMFUNC
State Page

(Read-only)

EPTI EPTK

int_handler
 if(!in_kernel())
 VMFUNC
 ...
 switch_stack()
 do_IRQ()
 ...
 if(...)
 switch_stack()
 VMFUNC
 iret

Both EPTI and EPTK

IST
Stacks

(Per-CPU)

TSS
(Per-CPU)

do_IRQ(){

 ...
}

Kernel
Stack

EPTK = true
gs_base
kernel_esp

IDT

IST#1

IST#6

IST#1

IST#6

IST#1

IST#6

Authorized licensed use limited to: The University of Utah. Downloaded on June 11,2023 at 07:26:41 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 25

ensuring read-only access to the page table hierarchy
within the guest system that we use in our work on
lightweight virtualized domains (LVDs).4 Concentrat-
ing on the performance aspect of VMFUNC isolation,
MemSentry leaves most VMFUNC-related attacks
out of scope.15

V MFUNC implements a unique design spot in
the space of hardware isolation mechanisms.

Several limitations hinder the immediate adoption
of VMFUNC-based isolation solutions. First, isola-
tion with VMFUNC requires several nonstandard
invariants that control the layout of both virtual and
physical address spaces across isolated subsystems.
While the enforcement of these invariants is pos-
sible in experimental research prototypes, it is not
clear whether such complexity is practical for pro-
duction systems.

Second, EPT switching has a higher overhead com-
pared to a simpler tag-based MPK. Updating the tag
with the wrpkru instruction takes only 20–26 cycles,
while the execution of vmfunc takes 109–147 cycles.
Furthermore, EPT switching has no support for
zero-copy communication, which is naturally enabled
in tag-based solutions like MPK and MTE and isola-
tion schemes based on PAC (passing a pointer to a
memory region required reencrypting the pointer for
the callee subsystem).

Third, another limitation of VMFUNC-based isola-
tion schemes is the requirement to execute the system
under the control of a hypervisor. While the over-
heads of virtualized execution can be addressed,4 it is
not clear if support for nested virtualization required
to execute a VMFUNC-isolated system in a modern
de facto virtualized cloud environment can be pro-
vided efficiently. More important, VMFUNC inher-
ently requires trust in the hypervisor responsible for
maintaining EPTs. Unfortunately, this goes against the
recent industry trend to remove the hypervisor from
the TCB through support for hardware-encrypted
VMs like AMD SEV and Intel TDX.

On the other hand, compared to other isolation
mechanisms, VMFUNC provides several unique advan-
tages. First, in contrast to a tag-based mechanism like
MPK and MTE, VMFUNC relies on the switching
of an EPT. An obvious advantage of this approach is
the ability to implement isolation without additional
mechanisms required to ensure the safety of unprivi-
leged vmfunc instructions, that is, without binary
rewriting required to ensure the absence of malicious
wrpkru instructions or enforcing a specific MTE tag.

Second, in contrast to tag-based solutions that are
inherently limited to a small number of isolated domains

due to the limited number of bits that can hold the cur-
rent tag (in either unused bits of the page table entries
or unused bits of the register), VMFUNC can support
a large number of isolated domains. (While the current
size of the EPT table is limited to 512 domains, there is
no inherent architectural limitation that would prevent
increasing this limit.)

References
	 1.	 A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M.

Sammler, P. Druschel, and D. Garg, “ERIM: Secure, effi-
cient in-process isolation with protection keys (MPK),” in
Proc. 28th USENIX Secur. Symp., 2019, pp. 1221–1238.

	 2.	 M. Hedayati et al., “Hodor: Intra-process isolation for
high-throughput data plane libraries,” in Proc. USENIX
Conf. Usenix Annu. Tech. Conf. (USENIX ATC), 2019, pp.
489–504.

	 3.	 Z. Mi, D. Li, Z. Yang, X. Wang, and H. Chen, “SkyBridge:
Fast and secure inter-process communication for micro-
kernels,” in Proc. 14th ACM Eur. Conf. Comput. Syst.
(EuroSys), 2019, pp. 1–15, doi: 10.1145/3302424.
3303946.

	 4.	 V. Narayanan, Y. Huang, G. Tan, T. Jaeger, and A. Burtsev,
“Lightweight kernel isolation with virtualization and VM
functions,” in Proc. 16th ACM SIGPLAN/SIGOPS Int.
Conf. Virtual Execution Environ. (VEE), 2020, pp. 157–
171, doi: 10.1145/3381052.3381328.

	 5.	 Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwart-
ing memory disclosure with efficient hypervisor-enforced
intra-domain isolation,” in Proc. 22nd ACM SIGSAC Conf.
Comput. Commun. Secur. (CCS), New York, NY, USA:
Association for Computing Machinery, 2015, pp. 1607–
1619, doi: 10.1145/2810103.2813690.

	 6.	 Z. Hua, D. Du, Y. Xia, H. Chen, and B. Zang, “EPTI:
Efficient defence against meltdown attack for unpatched
VMs,” in Proc. USENIX Annu. Tech. Conf. (USENIX
ATC), 2018, pp. 255–266.

	 7.	 S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk:
Software abstraction for Intel Memory Protection Keys
(Intel MPK),” in Proc. USENIX Annu. Tech. Conf. (USE-
NIX ATC), 2019, pp. 241–254.

	 8.	 J. Gu, H. Li, W. Li, Y. Xia, and H. Chen, “EPK: Scalable
and efficient memory protection keys,” in Proc. USENIX
Annu. Tech. Conf. (USENIX ATC), 2022, pp. 609–624.

	 9.	 D. Sehr et al., “Adapting software fault isolation to con-
temporary CPU architectures,” in Proc. 19th USENIX
Conf. Secur., 2010, pp. 1–11.

	10.	 D. McKee et al., “Preventing kernel hacks with HAKC,” in
Proc. Netw. Distrib. Syst. Secur. (NDSS), 2022, vol. 22, pp.
1–17, doi: 10.14722/ndss.2022.24026.

	11.	 R. M. Farkhani, M. Ahmadi, and L. Lu, “PTAuth: Tem-
poral memory safety via robust points-to authentica-
tion,” in Proc. 30th USENIX Secur. Symp., 2021, pp.
1037–1054.

Authorized licensed use limited to: The University of Utah. Downloaded on June 11,2023 at 07:26:41 UTC from IEEE Xplore. Restrictions apply.

26	 IEEE Security & Privacy� May/June 2023

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

	12.	 Y. Li et al., “PACMem: Enforcing spatial and tempo-
ral memory safety via ARM pointer authentication,” in
Proc. 29th ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), 2022, pp. 1901–1915, doi: 10.1145/3548606.
3560598.

	13.	 S. Yoo, J. Park, S. Kim, Y. Kim, and T. Kim, “In-kernel
control-flow integrity on commodity OSes using ARM
pointer authentication,” in Proc. 31st USENIX Conf. Secur.,
2022, pp. 89–106.

	14.	 M. Xie et al., “CETIS: Retrofitting Intel CET for generic
and efficient intra-process memory isolation,” in Proc.
29th ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), 2022, pp. 2989–3002, doi: 10.1145/3548606.
3559344.

	15.	 K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Atha-
nasopoulos, “No need to hide: Protecting safe regions on
commodity hardware,” in Proc. 12th ACM Eur. Conf. Com-
put. Syst., 2017, pp. 437–452, doi: 10.1145/3064176.
3064217.

	16.	 A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières,
and C. Kozyrakis, “Dune: Safe user-level access to privileged

CPU features,” in Proc. 10th USENIX Symp. Operating
Syst. Des. Implementation (OSDI), 2012, pp. 335–348, doi:
10.5555/2387880.2387913.

Vikram Narayanan is a Ph.D. candidate at the School
of Computing, University of Utah, Salt Lake City,
UT 84108 USA. His research interests include
operating systems and security. Narayanan received
a master’s in computer science from the University
of Saarland. Contact him at vikram@cs.utah.edu.

Anton Burtsev is an assistant professor at the School of
Computing, University of Utah, Salt Lake City, UT
84108 USA. His research interests include the design
and architecture of operating systems in the age of
targeted security attacks, heterogeneous hardware,
and data center-scale computing. Burtsev received a
Ph.D. from the University of Utah and spent six years
as a faculty at the University of California, Irvine
before joining the University of Utah. Contact him
at aburtsev@cs.utah.edu.

Since 1994, the SEI and the Institute of Electrical and
Electronics Engineers (IEEE) Computer Society have
cosponsored the Watts S. Humphrey Software Quality
Award, which recognizes outstanding achievements
in improving an organization’s ability to create and
evolve high-quality software-dependent systems.

Humphrey Award nominees must have demonstrated
an exceptional degree of significant, measured,
sustained, and shared productivity improvement.

TO NOMINATE YOURSELF OR A COLLEAGUE, GO TO
computer.org/volunteering/awards/humphrey-
software-quality

Nominations due by September 1, 2023.

FOR MORE INFORMATION
resources.sei.cmu.edu/news-events/events/wattsN

O
M

IN
A

TI
O

N
S

N
O

W
 O

PE
N

2024 IEEE CO
M

PU
TER SO

CIETY
/

SO
FTW

A
RE EN

G
IN

EERIN
G

 IN
STITU

TE
W

A
TTS S. H

U
M

PH
REY SO

FTW
A

RE Q
U

A
LITY A

W
A

RD

Digital Object Identifier 10.1109/MSEC.2023.3271181

Authorized licensed use limited to: The University of Utah. Downloaded on June 11,2023 at 07:26:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6274-9242

	16_21msec03-narayanan-3251385.pdf

