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Abstract
Rust-for-Linux (RFL) is a new framework that allows

development of Linux kernel extensions in Rust. At first
glance, RFL is a huge step forward in terms of improving
the security of the kernel: As a safe programming language,
Rust can eliminate wide classes of low-level vulnerabilities.
Yet, in practice, low-level driver code – complex driver
interface, a combination of reference counting and manual
memory management, arithmetic pointer and index oper-
ations, unsafe type casts, and numerous logical invariants
about the data structures exchanged with the kernel might
significantly limit the security impact of Rust.

This work takes a careful look at how Rust can impact
the security of driver code. Specifically, we ask the question:
What classes (and what fraction) of vulnerabilities typi-
cally found in device driver code can be eliminated by re-
implementing device drivers in Rust? We find that Rust can
eliminate large classes of safety-related vulnerabilities, but
naturally struggles to address protocol violations and seman-
tic errors. Moreover, to be fully eliminated, many classes
of flaws require careful programming discipline to avoid
memory leaks and runtime panics (e.g., explicit checks for
integer overflows and option types), careful implementation
of Drop traits, as well as correct implementation of reference
counting. Our analysis of 240 driver vulnerabilities that are
present in device drivers in the last four years, shows that
82 could be automatically eliminated by Rust, 113 require
specific programming idioms and developer’s involvement,
and 45 remain unaffected by Rust. We hope that our work
can improve the understanding of potential flaws in Rust
drivers and result in more secure kernel code.

1. Introduction
Device drivers and kernel extensions have long been

considered one of the primary sources of vulnerabilities in
the kernel [19, 56]. Device drivers implement an interface
between software and hardware, providing the means by
which the upper layers of the kernel (e.g., network protocol
stacks, file systems, power management, graphics, etc.) com-
municate with a diverse range of peripheral devices (e.g.,
network cards, solid-state and spinning disks, USB devices,
PCI bus, etc.). In most cases, device drivers are developed
by third-party device vendors that often have only a partial
understanding of the kernel’s programming and security
idioms. Complexity and rapid development pace result in
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a historically higher rate of flaws and vulnerabilities in the
driver code compared to the rest of the kernel. For example,
an empirical study of faults in the Linux kernel by Chou et
al. found that in 2001, device drivers contained 7 times more
faults compared to other subsystems [19]. Despite the fact
that improved testing, fuzzing [20, 37, 13, 57, 62, 58, 50,
72, 80, 78, 50] and static analysis improved device driver
flaw density significantly in the next 10 years, device drivers
remained among the top three subsystems (along with arch

and fs) with the highest flaw densities in the kernel [56].
Our analysis of the CVE database for the period from 2014
to 2023 shows that device drivers account for 16-59% of all
vulnerabilities in the Linux kernel (Table 1).

To improve security of the kernel, numerous projects
explored the possibility to execute device drivers as isolated
subsystems on top of minimal microkernels [40, 5, 36,
28, 48, 6, 7, 41, 26, 39, 33], virtual machines [9, 55,
30, 46, 32, 69, 10], backward-compatible driver execution
frameworks [22, 43, 59, 75, 77, 2, 34, 12, 76, 27, 23, 35,
38], and within the kernel itself through both hardware [73,
52, 54, 31] and software [51, 15, 24] mechanisms. Unfortu-
nately, isolation approaches did not take traction in mainline
kernels due to high performance overhead and arguably
minimal security benefits. Isolation of the driver in which
the unmodified driver code is placed in a separate memory
compartment, fails to provide practical security benefits due
to a broad range of cross-interface attacks [14, 18].

Looking for a more practical solution, the Linux kernel
community turned to an alternative approach – low-overhead
safe programming languages, and, specifically the possibil-
ity of implementing device drivers in Rust. Rust-for-Linux
(RFL) is a device driver framework for Linux that enables
the development of device drivers in Rust. At a high level,
RFL implements Rust bindings for each kernel subsystem,
e.g., network, block, non-volatile memory on PCIe (NVMe),
etc. These bindings allow Rust device drivers to interact
with the kernel interface implemented in C. Moreover, RFL
bindings expose a safe Rust interface via a collection of
wrapper types and high-level abstractions (e.g., iterators)
that internally implement run-time checks, ensure correct
reference counting, synchronize access, etc. As a result, the
driver can be implemented in a safe subset of Rust and hence
enjoy the security benefits of spatial and temporal safety.

RFL offers a surprising mix of practicality and security.
Early empirical studies suggest that nearly 70% of security
issues in the low-level systems code are related to memory
safety and hence can be potentially eliminated through the



use of Rust [70, 11]. Hence, while not being isolated in
a traditional sense, a device driver implemented in a safe
language has a much smaller chance of providing a platform
for security attacks on the kernel. Spatial and temporal
safety combined with control flow enforcement, eliminate
many classes of low-level flaws. Moreover, a strong type
system of Rust enforces additional correctness guarantees,
e.g., lifetimes of reference counted objects, absence of races
through synchronization primitives, and more.

Seemingly, RFL offers a huge step forward in terms
of improving the security of the kernel yet at the cost
of rewriting device drivers in Rust. A natural question,
however, is what security benefits can be achieved by RFL?
While the safe subset of Rust prevents a range of low-level
vulnerabilities, multiple classes of vulnerabilities, e.g., vio-
lations of driver-kernel protocol and semantic data structure
invariants, cannot be prevented by safety alone. Moreover,
the safe subset of Rust is too restrictive to implement general
code and unavoidably requires help from unsafe extensions
to implement bindings for unsafe kernel functions, hardware
device interfaces, and sometimes even to bypass perfor-
mance limitations of the safe Rust subset.

In the past, several studies analyzed the use of unsafe
code in Rust programs as well as the impact of unsafe
code on the overall safety of the system [3, 60, 21, 61].
Xu et al. and Cui et al. conducted empirical studies of
CVEs in real-world Rust programs [79, 21]. Following the
best practices of experienced Rust teams, Astrauskas et al.
formulated three principles for the “secure” use of unsafe
code and then conducted an empirical study of whether
these principles hold in practice [3]. While these studies
provide a number of important insights into the safety and its
security implications, they focus on the use of Rust in typical
user applications. We argue that the complex execution
environment of the kernel combined with the semantically
rich kernel-driver interface poses a unique set of challenges
for developing secure Rust code.

Device drivers implement the logic of the driver interface
in a concurrent and fully reentrant execution environment
of the kernel. The kernel invokes the driver interface on
multiple CPUs while at the same time preempting execution
of driver functions with asynchronous interrupts. Hardware
unplug events can trigger a driver tear-down protocol that
may deallocate the internal state used concurrently by other
driver interfaces. To support a range of low-level opti-
mizations, the driver-kernel interface utilizes a collection of
unsafe programming idioms, e.g., co-location of multiple
data structures with subsequent unsafe type casts, nesting
of data structures with container_of and member_of id-
ioms, tagged and anonymous unions, polymorphism via void
pointers, overloading pointers with negative error codes,
etc. Finally, the driver code is responsible for maintaining
a multitude of high-level semantic invariants ranging from
security checks to high-level invariants about the layout and
state of each data structure (e.g., the skb->tail pointer of
the skb data structure that represents a network packet in the
Linux kernel stays within the bounds of allocated skb->data

region).

Year CVEs SLOC (mil)
Total Driver % Kernel Driver

2014 130 22 16.9% 5.2 7.5
2015 80 15 18.8% 5.3 8.5
2016 216 65 30.1% 5.6 9.2
2017 452 267 59.1% 5.8 10.9
2018 180 44 24.4% 5.9 11.5
2019 291 154 52.9% 6.1 12.1
2020 129 38 29.5% 6.5 13.3
2021 162 42 25.9% 6.7 14.5
2022 310 92 29.7% 7.2 16.6
2023 263 75 28.5% 7.4 17.2

TABLE 1: CVEs in the Linux kernel versus those in its device
drivers and the SLOC count of one of the major kernel release in
that year.

Our work takes a careful look at how Rust can impact
the security of the driver code. Specifically, we ask the
question of what classes (and what fraction) of vulnera-
bilities found in device drivers can be eliminated by re-
implementing device drivers in Rust? Since device drivers
cannot be implemented in the safe subset of Rust and require
some unsafe functions and code blocks, what classes of vul-
nerabilities are introduced or remain unmitigated by unsafe
Rust extensions? What are the best practices for the use of
safe and unsafe Rust in the kernel to eliminate the biggest
fraction of vulnerabilities? And finally, since mitigation of
some vulnerabilities, even in the safe subset of Rust requires
the use of specific Rust idioms, we study whether existing
RFL Rust drivers follow these idioms.

To answer these questions, we study a set of 240 vul-
nerabilities discovered in Linux device drivers in the last
four years. We find that Rust can eliminate large classes
of safety-related vulnerabilities but naturally struggles to
address protocol violations and semantic errors. Moreover,
to be fully eliminated, many classes of flaws require careful
programming discipline to avoid memory leaks and runtime
panics (e.g., explicit checks for integer overflows and option
types), careful implementation of Drop traits, as well as
correct implementation of reference counting. Our analy-
sis shows that 82 vulnerabilities would be automatically
eliminated if device drivers were rewritten in Rust, 113
would require specific programming idioms and developer
involvement, and 45 remain present even in RFL drivers.
We hope that our analysis can improve the security of the
Linux kernel through a collection of development practices
that are needed to amplify the security impact of Rust.

2. Background and Related Work
2.1. Rust

Rust is a programming language designed to provide
safety while maintaining performance characterisics of un-
safe languages [29]. By using a compile-time borrow
checker, in contrast to commodity safe languages, Rust
implements memory safety without a managed runtime and
garbage collection. At a high level, Rust introduces the
concept of ownership. Each value in Rust is assigned a
single owner, which is the scope that it is defined in. The
ownership of a value can also be moved to another function



through a function call, in which case the caller loses all
access to the value after the call. The idea of ownership
allows static reasoning about the lifetime of each object
on the heap and for explicit deallocation. At the end of its
lifetime, the value is automatically dropped with its storage
reclaimed.

Restricted ownership of Rust is too constraining for
the development of general programs. For example, it is
impossible to implement a doubly linked list relying only
on basic ownership semantics. Hence, Rust makes a practical
choice to provide an escape hatch known as unsafe Rust. In
unsafe blocks, the borrow checker is still in effect but the
language allows unsafe operations like dereferencing raw C
pointers. The Rust standard library introduces a collection
of types that internally use unsafe extensions and rely on
runtime checks to establish safety for the exposed interface.
To construct a doubly-linked list, one can combine Rc<T>

and RefCell<T>. The former provides shared ownership and
automatic deallocation through reference counting, and the
latter allows mutating a value through immutable references
(known as interior mutability).

2.2. Rust for Linux (RFL)
The idea of bringing Rust into the Linux kernel roots

back to a hobbyist project started in 2013 [1]. RFL was
officially added to the kernel in 2021. Developers started
rewriting complex device drivers such as Binder [63],
Nvme [67], network drivers [64] and also implemented new
GPU drivers [66] in Rust.

In Linux, device drivers are implemented as dynamically
loaded kernel extensions. Specifically, device drivers are
object files (ELF binaries) that are compiled and linked sep-
arately from the core kernel. To illustrate the development
of a Linux driver in Rust, we consider the example of an
NVMe device driver that provides a high-speed interface to
non-volatile memory attached over the PCIe bus.

At a high-level, RFL relies on bindgen [44] to auto-
matically generate foreign function interface (FFI) bindings
from the kernel header files (Listing 1). Bindgen takes in
a C header file and automatically translates the C struc-
tures and function declarations to Rust-compatible structures
and signatures (e.g., the __pci_register_driver() is a C-
compatible Rust function generated by bindgen).

The kernel developer then uses the bindings to construct
a “kernel” crate that acts as a trusted layer between unsafe
kernel and a device driver implemented in safe Rust. The
kernel crate is written in idiomatic Rust, utilizing Rust
features such as traits and templates to create a conve-
nient abstraction for the actual Rust driver. For example,
to implement registration of the driver, developer of the
kernel crate implements the DriverOps trait. To register a
driver with the PCI subsystem, the implementation of the
safe register method calls the C __pci_register_driver

function through unsafe Rust.
Below, we discuss typical RFL idioms that are used to

provide such safe interface on top of unsafe bindings.
Driver interfaces In Linux, each driver is responsible for
registering a collection of function pointers with the kernel

1 extern "C" {
2 pub fn __pci_register_driver(
3 arg1: *mut pci_driver,
4 arg2: *mut module,
5 mod_name: *const core::ffi::c_char,
6 ) -> core::ffi::c_int;
7 }

(a) Automatically generated bindings

1 pub struct Adapter<T: Driver>(T);
2
3 impl<T: Driver> driver::DriverOps for Adapter<T> {
4 type RegType = bindings::pci_driver;
5
6 fn register(
7 pdrv: &mut Self::RegType,
8 name: &'static CStr,
9 module: &'static ThisModule,

10 ) -> Result {
11 // ...
12 pdrv.id_table = T::ID_TABLE.as_ref();
13
14 // SAFETY: `pdrv` is guaranteed to be a valid `

RegType`.
15 to_result(unsafe {
16 bindings::__pci_register_driver(pdrv as _,

module.0, name.as_char_ptr())
17 })
18 }
19 }

(b) Kernel crate

Listing 1: Partial implementation of the PCI driver adapter in RFL

that implement the driver’s interface. C code uses data struc-
tures with function pointers to implement driver interfaces.
RFL, however, uses traits to provide type- and lifetime-
checked versions of such interfaces. For example, the Rust
NVMe driver uses block::mq::Operations trait to imple-
ment the interface of the multi-queue block IO subsystem
(implemented with struct blk_mq_ops in C drivers).
Lifetimes Typically, the kernel follows two distinct patterns
of managing lifetimes of dynamic data structures exchanged
with the driver: reference counting and regular deallocation
based on the invocation context (i.e., the object is known
to be deallocated when a specific kernel or driver function
is invoked). RFL is designed to support both paradigms in
a safe manner. For reference-counted objects in C, RFL
implements safe wrappers around the unsafe C functions
that perform reference counting, like get_device() which
increments the counter given a struct device pointer and
its counterpart put_device() which decrements the counter.
In RFL, the C struct device is wrapped by the safe Rust
Device type which integrates with the C reference counting
infrastructure by implementing the AlwaysRefCounted trait.
The AlwaysRefCounted implementation of Device includes
inc_ref() and dec_ref() methods that call get_device()
and put_device() respectively.

For C data structures with specific functions for deal-
location, RFL implements Drop for their safe wrappers.
For example, net::phy::Registration in RFL models a
registration of a PHY driver. Its Drop implementation calls
phy_drivers_unregister() to automatically unregister the
driver from the kernel when the handle goes out of scope.
Driver registration and de-registrtion protocols RFL en-
courages the use of Rust Drop method to provide automatic
implementation of driver registration and cleanup protocols



(i.e., the cleanup is implemented inside Drop). However, it
should be noted that Rust does not consider memory leaks
to be safety violations. Even in the safe subset of Rust it
is possible to “forget” an object to surrender the owner-
ship without calling the Drop implementation. Furthermore,
global variables (static) in Rust have lifetimes that span
the entire program and Drop is not automatically called.

2.3. Vulnerabilities in Rust
Early empirical reports estimated that nearly 70% of

security issues in the low-level code that are typically
assigned a CVE are related to memory safety and hence
could potentially be eliminated through the use of a safe
programming language like Rust [70, 11, 65]. Unfortunately,
while the safe subset of Rust prevents a range of low-level
vulnerabilities, the security of the system rests on careful
use of unsafe Rust. Qin et al. conducted a manual analysis
of 850 instances of unsafe Rust to understand the reasons
for using unsafe code in real programs as well as to analyze
errors related to the use of unsafe Rust and concurrency
primitives [61]. Subsequently, multiple studies tried to ana-
lyze the implications of unsafe Rust in commodity code [3,
60, 21]. For example, in their follow-up work, Qin et al.
analyzed errors in Rust programs on the boundary of safe
and unsafe code, e.g., a buffer overflow due to the use of
incorrect bounds passed from the safe code and used without
checks in the unsafe subset, races, etc. [60]. Xu et al. and
Cui et al. conducted empirical studies of CVEs in real-world
Rust programs [79, 21]. Following the best practices of
experienced Rust teams, Astrauskas et al. formulate three
principles for the “secure” use of unsafe code and then
conduct an empirical study of whether these principles hold
in practice [3]. An interesting observation is that 44.6%
of unsafe function definitions in the Rust ecosystem are
bindings to foreign function definitions used for linking
against unsafe C code – something what we observe on
the device-kernel interface as well. Evans et al. conducted a
study of how unsafe code propagates through the program,
i.e., how many functions transitively depend on unsafe code
and hence become “possibly unsafe” [25].

In contrast to prior work, which provides many insights
of how unsafe Rust is used in real programs and what are
the typical cases for errors in both safe and unsafe Rust, our
study aims to understand the impact Rust can have on the
security of the Linux kernel (along with the programming
practices which are essential for improving correctness of
both safe and unsafe device driver code).

3. Methodology
Our study aims to answer the following specific ques-

tions: Q1. What classes (and which fraction) of typi-
cal device driver vulnerabilities can be eliminated by re-
implementing device drivers in Rust? Q2. How unsafe Rust
is used in RFL and what typical vulnerabilities are intro-
duced by it? Q3. Do existing Rust device drivers follow best
practices for safety and security in both safe and unsafe
code?

To answer Q1, we collect the set of Linux kernel CVEs

from the device driver code (i.e., under the ./drivers

subtree of the kernel tree). Specifically, we take the data
from the CVE database from 2020 to 2024 and filter driver
vulnerabilities by the source path [49]. To ensure a general
approach to classification, we create a new taxonomy of
driver vulnerabilities. Our taxonomy is based on the analysis
of common vulnerabilities in the Linux kernel by Chen et
al. [16] but extended with novel vulnerability classes that we
observe in our vulnerability set. At a high level, we classify
vulnerabilities into three big classes: 1) errors related to
safety, 2) protocol violations (i.e., violations of expected
behavior of the subsystems with respect to lock acquisi-
tion, order of function invocations, etc.), and 3) semantic
violations (i.e., violations of high-level assumptions about
the program state). We then manually analyze all device
driver vulnerabilities and classify them (each vulnerability
is analyzed by at least two people to ensure confidence
in classification). We place each vulnerability in a single
class to avoid double counting. For each class, we analyze
whether a vulnerability can be eliminated by rewriting the
driver code in Rust. Below, we label such cases as Yes.
For some vulnerabilities, naive Rust implementation reduces
the severity of the vulnerability, e.g., from an unrestricted
read or write memory access to a denial-of-service due to
panic, and requires additional programmer effort to handle
the panic. We discuss the possible mitigation and label such
cases as Yes+P. If Rust does not help to address a specific
subset of vulnerabilities we label them as No.

To answer Q2, we analyze all instances of unsafe code
in several recent device drivers implemented in Rust. We
introduce a taxonomy that allows us to classify typical uses
of unsafe code. Then we use Semgrep [71], a semantic grep
tool that allows us to explore the abstract syntax tree of
the program to mechanically classify uses of unsafe Rust in
both the driver code and in the kernel crate.

To answer Q3, for each vulnerability class (and espe-
cially the ones that require programmer effort to eliminate
vulnerability through a specific programming idiom) we an-
alyze whether this idiom is followed in the code of existing
Rust drivers.

4. Driver Vulnerabilities
To understand the impact of RFL on the security of the

Linux kernel, we perform an analysis and classification of
all driver CVEs in the last four years.

4.1. Safety Violations
Safety violations are a broad set of flaws related to

improper use of indexes and pointers, integer overflows and
underflows, divisions by zero, violation of object lifetimes,
improper type casts, etc.
Buffer overflow Buffer overflow is one of the most com-
mon bugs in the Linux kernel, accounting for 20% of all
CVEs from 2020 to 2024. Buffer overflow happens when
the code accesses memory beyond the allocated size due
to incorrect computation of the array index (e.g., CVE-
2021-43389), improper length validation (e.g., CVE-2021-
42327), mismatch between allocated and the intended size



1 int detach_capi_ctr(struct capi_ctr *ctr) {
2 ...
3 + if (ctr->cnr < 1 || ctr->cnr - 1 >= CAPI_MAXCONTR) {
4 + err = -EINVAL;
5 + goto unlock_out;
6 + }
7 +
8 if (capi_controller[ctr->cnr - 1] != ctr) {
9 err = -EINVAL;

10 goto unlock_out;
11 }

Listing 2: Array out-of-bound read (CVE-2021-43389)

1 static ssize_t dp_link_settings_write(struct file *f,
2 const char __user *buf, ...) {
3 - if (parse_write_buffer_into_params(wr_buf, size,
4 + if (parse_write_buffer_into_params(wr_buf, wr_buf_size,
5 (long *)param, buf,
6 max_param_num,

Listing 3: Out-of-bound access (CVE-2021-42327)

of the object on the heap (e.g., CVE-2021-31916), etc. For
example, lines 3–7 of Listing 2 illustrate a patch for an
array out-of-bound vulnerability (CVE-2021-43389), which
adds explicit bounds validation for the controller number
ctr->cnr before indexing into the capi_controller array.

Rust ▶ (Yes+P) Intuitively, Rust safety guards against
buffer overflows by adding implicit bounds checks on each
access. In practice, however, a straightforward rewrite of
the driver code in Rust reduces the impact of out-of-bound
access to a panic, which is still a critical denial-of-service
attack. Hence, even in Rust, the developer has to add explicit
bounds checks to avoid the panic as patch suggests in
Listing 2.

Moreover, some buffer overflows (e.g., CVE-2021-
42327) have a flavor of logical error in which a wrong
variable is mistakenly used to specify the size of the buffer.
In Listing 3, the size is used instead of wr_buf_size

as the length of the wr_buf buffer causing buffer over-
flow Even in safe Rust, such logical error can lead
to unsafe behavior if the variable flows into an unsafe
function that performs operation on the buffer, e.g., a
memory copy. In our example of CVE-2021-42327, the
parse_write_buffer_into_params() eventually calls into
memcpy(). Therefore, to ensure safety, a careful re-design of
the driver abstractions is required. For example, the buffers
need to use safe Rust data structures like arrays, slices, and
vectors, and access to linked lists should be abstracted with
iterators. Unfortunately, often establishing the safety of such
unsafe accesses (e.g., establishing the safety of an iterator
requires a non-trivial contract with an unsafe C world which
potentially can lead to vulnerabilities).

Rust ▶ (No) One vulnerability in our dataset, CVE-
2023-6238, triggers a buffer overflow via the hardware
interface. Specifically, the user is able to specify the size
of the DMA buffer for the device to use. This buffer is
copied to the kernel, and if the buffer size is smaller than
the device expects, the device will overwrite kernel memory
causing a random crash.
Memory leak A memory leak occurs when all pointers to
an allocation are discarded without freeing the allocation
itself, leaving no way to free it later. They can be used

1 if (macvlan_forward_source(skb, port, eth->h_source)) {
2 + kfree_skb(skb);
3 return RX_HANDLER_CONSUMED;
4 }

Listing 4: Memory leak (CVE-2022-3526)

1 static ssize_t pxa3xx_gcu_write(...) {
2 ...
3 - int words = count / 4;
4 + size_t words = count / 4;
5 ...
6 ret = copy_from_user(buffer->ptr, buff, words * 4);
7 ...
8 }

Listing 5: Integer overflow (CVE-2022-39842)

by attackers to exhaust system memory and cause a denial
of service. For example, in Listing 4 line 2, the macvlan
driver omitted a deallocation when a packet is consumed in
a specific configuration.

Rust ▶ (Yes) Heap-allocated types managed by Rust
like Box<T> and Arc<T> implement automatic deallocation
when all references are dropped. Safe wrappers of reference-
counted C structs are typically consumed via ARef<T> types
which force the implementation of a corresponding dec_ref

method to decrement the counter in C.
Rust ▶ (Yes+P) To interface with custom C data struc-

tures that often have non-trivial cleanup and deallocation
logic, the safe wrappers must implement the drop method
correctly. Listing 21 which we discuss later in the paper
is an example of a complex drop method in one of the
current RFL drivers, which has to carefully invalidate the
TLB mappings.
Integer overflow, underflow, and division by zero Integer
overflow or underflow happens when an arithmetic operation
results in a number that cannot be represented with a given
number of bits. The typical cause is incorrect usage of
type, such as use of a 32-bit integer type instead of 64-
bit type or using a signed type instead of an unsigned type.
In Listing 5, the words variable at line 3 is typed incorrectly
as int (32 bits signed integer) rather than usize_t (64
bits unsigned integer). The variable words value will get
truncated when count is bigger than 233 − 1. Furthermore,
copy_from_user at line 6 passes words*4 typed int as a
usize_t. This implicit cast can cause a explosion of the
value when words*4 is greater than 231 − 1, thus resulting
its signed bit to carry over onto the 64 bits wide variable.

Rust ▶ (Yes) Rust addresses a subset of overflow bugs
through automatic type inference. For example, instead of
having to explicitly specify the type of a variable, program-
mers writing idiomatic Rust let the compiler automatically
infer the correct type:
1 let word = count / 4;

If a developer accidentally picks a wrong type by specifying
it explicitly, the compiler reports a type mismatch:
1 let word: u32 = count / 4; // compiler error

Rust ▶ (Yes+P) Despite support for type inference, there
are cases when an explicit type conversion to a larger type is
still required to avoid the overflow. For example, Listing 6
shows an overflow bug caused by integer multiplication in a



1 - let tilemap_size = (4 * rgn_size * mtiles * layers) as usize;
2 + let tilemap_size = (4 * rgn_size * mtiles) as usize * layers

as usize;

Listing 6: Apple GPU Driver IO

1 static int spl2sw_nvmem_get_mac_address(struct device *dev, ...)
2 u8 *mac;
3 ...
4 if (!is_valid_ether_addr(mac)) {
5 - kfree(mac);
6 dev_info(dev, "Invalid mac address in nvmem (%pM)!\n", mac);
7 + kfree(mac);
8 return -EINVAL;
9 }

10 ...
11 }

Listing 7: Use-after-free due to incorrect ordering in CVE-2022-
3541

recent Rust driver for the Apple AGX GPU. The expression
4 * rgn_size * mtiles can overflow a 32 bit value, hence
requiring an explicit conversion to a 64-bit type (usize).
By default, RFL enables runtime overflow checks through a
compiler flag (-C overflow-checks), which triggers a panic
when an arithmetic operation results in overflow. Unfortu-
nately, panics still result in denial-of-service attacks. Hence
explicit range checks are required to avoid panics. Rust pro-
vides safe wrappers for arithmetic operations (checked_add,
checked_sub, checked_mul, and checked_div) that return
None if the operation results in integer overflow, underflow,
or division by zero. This allows the driver to gracefully
handle the overflow instead of panicking.
Use-after-free Use-after-free (UAF) is a vulnerability in
which a resource is accessed after it has been deallocated.
For example, in Listing 7, variable mac (allocated at line 2)
gets freed at line 5, and then accessed by dev_info at line 6.
This bug can be exploited by an attacker to gain control of
the system.

Rust ▶ (Yes) Rust type system prevents a variable from
being referenced outside of its lifetime. In an equivalent
Rust program, the lifetime of mac at will be extended up
to the last access by dev_info(). If the drop() method is
used to terminate the lifetime of mac explicitly, the future
references to mac will generate a compiler error.

Rust ▶ (Yes+P) An option type (Option<T>) holds either
Some(T) or None and is often used to handle NULL-able
types. Instead of using a sentinel value that can be ignored,
option types force developers to explicitly handle the case
where the object is not present (hence checking for whether
the pointer is valid). However, panics are possible unless
careful programming discipline of explicit checking for None
is implemented.
Null pointer dereference Null pointer dereference can oc-
cur when the kernel accesses uninitialized memory (e.g.,
CVE-2020-15437), or dereferencing into newly allocated
memory without checking for allocation failure (e.g., CVE-
2022-3115).

Rust ▶ (Yes+P) In general, safe Rust prevents most
cases of null pointer dereference with the ownership model
where having a valid reference to a value provides type
invariant guarantees. Safe Rust does not allow uninitialized

1 --- b/drivers/net/can/slcan.c
2 +++ b/drivers/net/can/slcan.c
3 static void slc_bump(struct slcan *sl) {
4 struct can_frame cf;
5
6 - cf.can_id = 0;
7 + memset(&cf, 0, sizeof(cf));
8 ...
9

10 skb_put_data(skb, &cf, sizeof(struct can_frame));

Listing 8: Information disclosure (CVE-2020-11494)

1 --- a/include/uapi/linux/usbdevice_fs.h
2 +++ b/include/uapi/linux/usbdevice_fs.h
3 struct usbdevfs_connectinfo {
4 unsigned int devnum;
5 unsigned char slow;
6 // 3-byte padding inserted by compiler
7 };
8 --- a/drivers/usb/core/devio.c
9 +++ b/drivers/usb/core/devio.c

10 static int proc_connectinfo(struct usb_dev_state *ps, ...) {
11 - struct usbdevfs_connectinfo ci = {
12 - .devnum = ps->dev->devnum,
13 - .slow = ps->dev->speed == USB_SPEED_LOW
14 - };
15 + struct usbdevfs_connectinfo ci;
16 +
17 + memset(&ci, 0, sizeof(ci));
18 + ci.devnum = ps->dev->devnum;
19 + ci.slow = ps->dev->speed == USB_SPEED_LOW;
20
21 if (copy_to_user(arg, &ci, sizeof(ci)))
22 return -EFAULT;
23 ...
24 }

Listing 9: Information disclosure via struct padding (CVE-2016-
4482)

variables. Explicitly NULL-able values are modeled as dis-
tinct types (Option<T>) in the type system. When option
types are used to represent explicitly NULL-able values,
panics can still occur if the programmer calls unwrap()

on a None value. Hence, careful programming discipline is
needed to avoid panics.

Memory disclosure Memory disclosure vulnerabilities leak
sensitive data from the kernel. Specifically, the allocation
of new data structures on the heap might accidentally leak
sensitive data. Information disclosure occurs when the unini-
tialized memory is not completely overwritten and gets
copied to userspace or sent over the network. In Listing 8,
the can_frame data structure gets partially initialized on the
stack at line 6. Other struct fields contain uninitialized data,
which is then sent over the CAN bus.

Rust ▶ (Yes) Rust enforces value initialization and all
fields of a struct must be initialized to known values before
the struct can be read.

Rust ▶ (No) Data structures may have implicit padding
inserted by the compiler to ensure alignment. Such padding
is transparent to the developer and can be left uninitialized
even when all fields are explicitly set. In Listing 9, a
usbdevfs_connectinfo struct is allocated on the stack with
all fields explicitly initialized (lines 11–14). However, the
compiler inserts 3 padding bytes at the end of this struct
(line 6) which still contain uninitialized data. To mitigate
such problems, a driver developer writing C code needs
to memset() stack allocations or use kzalloc() to acquire
zero-initialized memory on the heap. Similar to C, Rust



is susceptible to the padding problem, and requiring zero-
initialization in all scenarios may not be feasible. Functions
can then use trait bounds to constrain the allocator used for
objects passed to their arguments.
Confused pointer error type (PTR_ERR) A somewhat un-
usual programming idiom widely used in the kernel is to
encode errors for pointer return types as “negative” pointers
with the most significant bit set. This results in a common
error as checking for a non-NULL pointer will succeed even
though it represents an error in this encoding. As a result,
instead of following an error pass, the code uses an invalid
pointer triggering unsafe memory accesses.

Rust ▶ (Yes+P) RFL leverages high-level enum types to
represent pointer errors explicitly as Result<T, E>. Similar
to option types, the caller must explicitly handle or ignore
the potential error (E) to get the expected value (T).
Unsafe type cast Kernel often uses unsafe type casts
for tagged unions and void pointer types to implement
polymorphism. The kernel interprets the type of the data
structure based on the context or the tag value associated
with the union type. An error in type computation, e.g.,
wrong context or an erroneous tag, the driver code ac-
cesses a data structure using the wrong interpretation. In
CVE-2022-36402, the vmwgfx driver converts an integer
to enum vmw_ctx_binding_type using integer arithmetics.
Denial-of-service occurs when userspace provides an invalid
shader type as the input.

Another case of unsafe pointer casts is related to a pop-
ular kernel idiom: the container_of macro, which provides
access to the parent data structure from a given field. This
creates an assumption of the enclosing type which may not
be correct in all execution contexts. In CVE-2023-1076, the
tap driver calls sock_init_data() to initialize the low-level
struct sock type given a struct socket. However, the
function assumes that the struct socket passed is part of
a struct socket_alloc. This assumption does not hold for
tap_open’s usage, causing the sk_uid field to be initialized
to an unrelated value.

Rust ▶ (Yes) The Rust type system enforces a strict
type discipline that rules out unsafe type conversions. For
example, conversion from an integer tag encoding the type
provided by the user will require an explicit function that
will be forced to handle all possible options of the enumer-
ated type.

4.2. Protocol violations
Protocol violations are a set of vulnerabilities that lever-

age errors in the communication protocol between the driver
and the core kernel subsystems. The errors can stem from
missing or re-ordering protocol steps, breaking reference
counting discipline, failing to correctly implement synchro-
nization, violating rules of preemption and interrupt dis-
abling, invoke interfaces of the kernel repeatedly, failing to
yield, and so on.
Protocol steps Every driver follows a protocol, in which it
creates and registers interfaces with the kernel (e.g., timers,
work queues, driver-specific interfaces like character or a

1 static int rkvdec_remove(struct platform_device *pdev) {
2 struct rkvdec_dev *rkvdec = platform_get_drvdata(pdev);
3 cancel_delayed_work_sync(&rkvdec->watchdog_work);
4 rkvdec_v4l2_cleanup(rkvdec);
5 ...
6 }

Listing 10: Missing deinitialization routine (CVE-2023-35829)

block device). Typically, these interfaces remain operational
while the driver is active and have to be unregistered upon
tear down and sometimes during power mode transitions.
Naturally, errors in protocol implementation can result in
unsafe memory accesses like use-after-free, null-pointer
dereferences, double frees, etc.

Listing 10 shows an example in which developer fails
to unregister the work object. This could potentially lead
to a use-after-free (UAF) bug based on the interleaving of
the deinitialization and the workqueue callback threads (the
kernel accesses memory of the driver registered as part of the
workqueue after the driver is already unloaded). Line 3 fixes
the UAF bug by canceling the work in the deinitialization
routine of the driver.

Rust ▶ (Yes+P/No) In general protocol violations are
impossible to fix with Rust. Some specific errors can be
avoided by using higher-level constructs like guards and safe
reference counted types that explicitly implement correct
de-registration as part of the Drop method, but of course a
wide variety of errors remains. Arguably, an even larger set
of errors can be avoided by relying on session types that
explicitly encode allowed protocol transitions [74]. Unfor-
tunately, there is no ergonomic way of using session types
in Rust which hinders their adoption.
Reference counting Multiple subsystems in the kernel im-
plement lifetime management of data structures exchanged
with the driver via reference counting. For example, a
network traffic classifier maintains multiple network names-
paces and uses reference counters to determine the liveness
of each network namespace. An error in the reference
counting protocol, i.e., an extra or missing increment of a
reference counter can alter the lifetime of the object and lead
to memory leaks, use-after-free, and so on. For example, in
CVE-2022-29581, the reference counter for current network
namespace is mistakenly reduced in the error path, which
can lead to a use after free of the struct net.

Rust ▶ (Yes+P) To implement safe reference count-
ing (and ownership of objects shared across multiple con-
texts), Rust provides reference counted types like Rc<T> and
Arc<T>, which represent a handle to a reference-counted
object. The counter is automatically incremented when the
handle is cloned, and decremented as it goes out of scope.
RFL follows the same idiom with the AlwaysRefCounted

trait whose implementations should contain the required
calls to increment or decrement the counters in the Linux
kernel. Rust therefore prevents a subset of reference count-
ing errors ruling out unsafe memory accesses, e.g., use-after-
free.

Rust ▶ (No) Note, however, that even safe Rust can
leak memory with the forget function that consumes the
ownership without running the destructor. This can skip the



1 // drivers/tty/tty_jobctrl.c
2 static int tiocspgrp(struct tty_struct *tty,
3 struct tty_struct *real_tty, ...)
4 {
5 ...
6 - spin_lock_irq(&tty->ctrl_lock);
7 + spin_lock_irq(&real_tty->ctrl_lock);
8 put_pid(real_tty->pgrp);
9 real_tty->pgrp = get_pid(pgrp);

10 - spin_unlock_irq(&tty->ctrl_lock);
11 + spin_unlock_irq(&real_tty->ctrl_lock);
12 ...
13 }

Listing 11: Lock on the wrong object (CVE-2020-29661)

counter decrement and result in a denial of service (memory
exhaustion) or more severe attacks like protocol violations
similar to Listing 10 discussed above in which destructor is
responsible for implementing resource deallocation protocol
and can potentially trigger unsafe behavior.

Race conditions Due to the concurrent nature of Linux
device interfaces, data races are very frequent (15% of CVEs
in our data set). Data races manifest as a range of subtle
bugs and unsafe behaviors, such as use-after-free, double-
free, and null-pointer dereferences.

Rust ▶ (Yes) Rust type system eliminates nearly all
data race vulnerabilities. In most cases, a non-trivial amount
of human reasoning is required to get the synchronization
scheme right such as knowing what data structure to use,
what synchronization pattern to utilize. Nevertheless, we
observe that Rust forces developers to avoid some common
mistakes that frequently occur in C, such as failure to
use synchronization primitives altogether, lack of atomicity
while managing reference counted objects, accidental use
of a wrong lock, etc. Listing 11 shows an example where
the driver acquires incorrect lock (lines 6 and 10) to access
the fields within the locked object. This is impossible in
Rust as there is no way to access an object protected by a
synchronization primitive, e.g., Mutex<T>.

Rust ▶ (No) Even though safe Rust can eliminate most
data races, deadlocks are still possible. CVE-2023-2269 is
one example of a possible deadlock in our dataset.

Sleeping in atomic contexts A well-known kernel invari-
ant is that the kernel monopolizes the CPU and can only
perform operations that cannot sleep during certain atomic
contexts (e.g., holding a spinlock, executing an interrupt
handler). Violating this invariant may block the CPU for
a long time or result in a deadlock or a system hang. On
a multicore system, sleeping in an atomic context does not
always result in a system hang or crash, thus making it hard
to statically detect such conditions. For example, during the
invocation of kernel memory allocation functions (kmalloc)
under atomic contexts require passing the GFP_ATOMIC flag.
Syzkaller reported a violation of this invariant in the n_gsm

driver as CVE-2023-31082. In another example, a potential
SAC bug has been reported in the kernel mailing list for
the earlier version of the RFL NVMe driver implemented
in Rust [68].

Rust ▶ (No) Reasoning about the atomicity of the invo-
cation context is challenging [42]. Rust on its own would not
solve these problems and would need developers’ attention

1 // drivers/scsi/scsi_transport_iscsi.c
2 int show_transport_handle(struct device *dev,
3 struct device_attribute *attr, char *buf) {
4 struct iscsi_internal *priv = dev_to_iscsi_internal(dev);
5 +
6 + if (!capable(CAP_SYS_ADMIN))
7 + return -EACCES;
8 return sprintf(buf, "%llu\n", (unsigned long long)iscsi_handle

(priv->iscsi_transport));
9 }

Listing 12: Missing permission checks (CVE-2021-27364)

to avoid these mistakes when implementing a driver under
RFL.
Failure to yield Failure to yield is a bug when the code
fails to invoke one of the cooperative scheduling routines to
yield the CPU which results in a denial of service, freezes
of individual cores, and in the worst case, complete system
freeze. The major causes of failure to yield vulnerabilities
include infinite loops (CVE-2019-3900) and semantic errors
failing to invoke a yielding function. For example, in CVE-
2015-5364 the driver fails to invoke the cond_resched()

function.
Rust ▶ (No) Rust cannot prevent this type of vulner-

ability as it is a logical error that cannot be enforced by
neither a strong type system nor higher-level programming
techniques.

4.3. Semantic Violations
Any program maintains a number of invariants (often

implicit) about its state. Some invariants are simple, e.g.,
a pointer field of a data structure is not equal to NULL
after the data structure is properly initialized. More complex
invariants reflect the semantic properties of data structures,
e.g., validity of references, relationships between indexes
and buffers, high-level invariants about ordering, lack of
cycles, single membership, balancing, etc. A violation of
a semantic invariant results in an incorrect system behavior
and often, especially in an unsafe environment, provides an
attacker with powerful exploitation primitives: the ability to
read and write memory, alter control flow, etc.
Security and permissions While not frequent, in some
cases, device drivers are responsible for enforcing secu-
rity policies of the kernel, e.g., checking permissions and
capabilities on access to specific resources. For example,
in Listing 12, show_transport_handle() is a privileged
operation that should only be accessible to processes with
administrative privileges. However, the code at lines 6–7
fails to implement this security check.

Rust ▶ (No) Security vulnerabilities are logical errors
that cannot be prevented by Rust. Arguably, some instances
can be prevented by wrapping functions of the driver and
implementing security checks in a trusted kernel crate, but
of course such approach is limited to the checks that can be
performed before and after the function is invoked.
Logic errors Logic errors are failures to implement high-
level behavior of the program, i.e., violate specific algo-
rithms or break a high-level property of a data structure like
a linked list. For example, CVE-2022-4842 is a vulnerability
in the ntfs3 driver that resulted from the use of the wrong



1 --- a/fs/ntfs3/attrib.c
2 +++ b/fs/ntfs3/attrib.c
3 if (!attr_b->non_res) {
4 - u32 data_size = le32_to_cpu(attr->res.data_size);
5 + u32 data_size = le32_to_cpu(attr_b->res.data_size);

Listing 13: Logic error due to the use of an incorrect variable
(CVE-2022-4842)

1 void imx_register_uart_clocks(unsigned int clk_count) {
2 ...
3 imx_uart_clocks = kcalloc(clk_count, sizeof(struct clk *),

GFP_KERNEL);
4 + if (!imx_uart_clocks)
5 + return;
6 ...

Listing 14: Null pointer dereference due to potential allocation
failure in CVE-2022-3114

variable in place of a similarly-named one (Listing 13).
Even though it manifests as a null pointer dereference, the
vulnerability is caused by a logic error and cannot solved
by Rust safety.

Rust ▶ (No) High-level programming idioms can protect
against certain classes of errors as we discussed above. Yet
in general, Rust has no mechanisms to enforce the correct
behavior of the driver code.

Missing return value check Missing return value checks
can result in a null pointer dereference (e.g., CVE-2022-
3115, CVE-2022-3114, CVE-2022-3113). For example, in
Listing 14, kcalloc() (line 3) is called but the argument
goes unchecked (line 4), which results in a NULL pointer
dereference if allocation fails.

Rust ▶ (Yes) Rust eliminates missing return value bugs
through its support for the #[must_use] attribute which
forces the compiler to check that the return value is used by
the caller. For example, in RFL allocation functions return
Result<T> marked as #[must_use], requiring the developer
to explicitly handle allocation failures.

Loop termination In many cases loops in driver code use
user and sometimes device-provided values as the termi-
nation criteria. An absence of range checking can poten-
tially lead to infinite loops and thus denial-of-service. In
CVE-2022-48635, a command with zero iovec iterator size
will cause iomap_iter to always return 1, resulting in
an infinite loop. A more involved example is CVE-2024-
26603, in which the potential infinite loop occurs when
the kernel tries to restore floating point registers from the
userspace. If the kernel fails to restore the registers, it uses
fault_in_readable to check the number of faults that have
occurred while reading the restore region, and only retries
if no faults have occurred. However, the range of memory
that is checked is passed from userspace and can be smaller
than what is actually accessed, potentially resulting in a false
negative. The kernel can thus be stuck in an infinite retry
loop if part of the restore region is unreadable.

Rust ▶ (No) Rust does not guarantee loop termination,
and hence cannot prevent such vulnerabilities.

4.4. Analysis
To answer the question of which classes and what frac-

tion of typical device driver vulnerabilities can be eliminated
by re-implementing device drivers in Rust, we analyzed
CVEs for the past four years (2020-2024). Specifically we
identified 240 vulnerabilities discovered in Linux device
drivers and classified them into three large classes: safety
(113 vulnerabilities), protocol violations (82 vulnerabilities),
and semantic violations (45 vulnerabilities) in Table 2.

TABLE 2: CVE classification of device drivers in the Linux kernel.

Bug Class Yes Yes+P No Total
Safety Violation 26 88 6 120
- Buffer overflow 0 44 1 45
- Memory leak 6 7 0 13
- Integer arithmetic 0 6 0 6
- Use-after-free 15 7 0 22
- Null pointer dereference 0 17 0 17
- Memory disclosure 4 0 5 8
- Confused pointer error type 0 7 0 7
- Unsafe type cast 1 0 0 1
Protocol Violation 41 25 6 72
- Protocol steps 0 1 4 5
- Reference counting 0 24 0 24
- Race conditions 41 0 1 42
- Sleeping in Atmoic 0 0 1 1
Semantic Violation 15 0 33 48
- Security and permissions 0 0 7 7
- Logic errors 0 0 24 24
- Missing return value check 15 0 0 15
- Loop termination 0 0 2 2
Total 82 113 45 240

Safety vulnerabilities is the largest vulnerability class
(49.5% of our data set). Among the safety violations only
21% of vulnerabilities can be eliminated by Rust alone.
Other vulnerabilities require a specific programming tech-
nique and developer’s involvement (74%), e.g., explicit un-
wrapping of return types, arithmetic checks for overflow and
underflow, etc.). Together these two categories can eliminate
95% of safety vulnerabilities.

Protocol violations constitute 30% of our data set.
Among protocol violations, 56% of vulnerabilities can be
eliminated by Rust alone. In addition, 34% can be addressed
through a specific programming technique and developer’s
involvement, e.g., explicit unwrapping of return types, arith-
metic checks for overflow and underflow, etc. Together these
two categories can eliminate 91% of safety vulnerabilities.
Rust is able to address nearly all race conditions, and
address reference counting vulnerabilities with programmer
involvement.

Finally, semantic errors correspond to the 20% of all
driver vulnerabilities. Among semantic vulnerabilities 31%
can be addressed by Rust. While in general Rust cannot
help with logical errors, a large class of semantic errors are
missing return value checks (exactly 31%) and those are
addressed by Rust through the #[must_use] types.

5. Use of Unsafe Rust
Previous studies concluded that the majority of bugs and

vulnerabilities in Rust code are related to the use of unsafe



TABLE 3: Lines of unsafe code for three different Rust drivers

Type
Lines of unsafe Rust

Binder AGX NVMe Total
D K D K D K D K

FFI func. 2 117 3 150 2 129 7 396
C callback 13 7 0 42 0 29 13 78
Unsafe func. 0 127 3 75 0 101 3 303
Marker trait 3 113 20 104 0 60 23 277
Union field 9 1 4 2 1 0 14 3
Foreign borrow 8 0 0 0 0 0 8 0
Pointer cast 16 167 24 112 3 131 43 410
Kernel crate func. 17 307 42 179 1 203 60 689

TABLE 4: Source lines of code (SLOC) in RFL driver branches

Project Driver SLOC Kernel Crate SLOC
code unsafe % code unsafe %

Binder 4263 145 3.4 9116 884 9.7
AGX 15069 114 0.76 9428 915 9.71
NVMe 1758 27 1.54 7179 659 9.18

subset of the language [61, 60, 21, 79]. Naturally, we expect
that a large fraction of future vulnerabilities in RFL will be
found in unsafe Rust. To gain a deeper understanding of
how RFL uses unsafe Rust, we analyze kernel branches of
the three most complete Rust drivers: Binder, AGX, and
NVMe. We use Semgrep [71] on each branch to count and
classify instances of unsafe code (Table 3), falling back to
manual analysis for special cases. Specifically, for each class
of unsafe code, we list the number of times we see it in
the code of the driver (“D”) and the kernel crate (“K”).
Additionally, we used cargo-count to count the ratio of safe
vs unsafe source code lines in Table 4.

All three drivers use unsafe code in both the driver
and the kernel crates. Naturally, most of the unsafe code
occurs in the kernel crate. Yet RFL falls short of the goal
of avoiding unsafe in the driver itself (below we discuss
common patterns of using unsafe code in both crates). While
the percentage of the unsafe is less than 3.4% in all three
drivers, arguably it is still high and a further effort is needed
to reduce it possibly following the experience of research
operating systems implemented in Rust [8, 47, 53]. The
kernel crate has an even higher fraction of unsafe code
(9.7%).

Moreover, in many cases, the logic of why a specific
unsafe operation is safe is rather complex. RFL explicitly
documents such safety contracts. Unfortunately, this is done
informally (as a comment) instead of using a language
formalism similar to specification languages in Rust-based
automatic verification tools [45, 4].

Below we analyze common classes of unsafe Rust:

Kernel FFI functions RFL uses bindgen to automatically
generate raw bindings to C functions in the kernel. The
extern "C" bindings are unsafe. In most cases, a driver
accesses this low-level unsafe interface through the safe ab-
stractions provided by the kernel crate. Sometimes, however,
the driver opts to invoke the raw FFI bindings directly if safe
abstractions are not available.

1 #[no_mangle]
2 unsafe extern "C" fn rust_binder_compat_ioctl(
3 file: *mut bindings::file,
4 cmd: core::ffi::c_uint,
5 arg: core::ffi::c_ulong,
6 ) -> core::ffi::c_long {
7 // SAFETY: We previously set `private_data` in `

rust_binder_open`.
8 let f = unsafe {
9 Arc::<Process>::borrow((*file).private_data)

10 };
11 // SAFETY: The caller ensures that the file is valid.
12 match Process::compat_ioctl(f, unsafe {

File::from_ptr(file) }, cmd as _, arg as _) {
13 Ok(ret) => ret.into(),
14 Err(err) => err.to_errno().into(),
15 }
16 }

Listing 15: Safe wrapper for the compat_ioctl() function

1 pub struct Pool<T> {
2 ptr: *mut bindings::dma_pool,
3 // ...
4 }
5
6 // SAFETY: A `Pool` is a reference (pointer) to an

underlying C
7 // `struct dma_pool`. Operations on the underlying pool

is protected
8 // by a spinlock.
9 unsafe impl<T> Send for Pool<T> {}

10 unsafe impl<T> Sync for Pool<T> {}

Listing 16: Explicit unsafe marker trait assignment in dma::Pool

Unsafe kernel crate functions Some functions of the ker-
nel crate fail to implement a safe interface. For example,
List::remove() removes an element from a linked list. It
is unsafe because it requires the element being removed to
be in the same list, an assumption that cannot be enforced
through the type system.

C callback functions To implement a driver interface, every
driver registers a collection of interface callback functions
with the kernel. Callback functions interact directly with the
kernel hence implementing a backward-compatible interface
(in Rust they are marked as extern "C").

Often callback functions exchange raw pointers with
the kernel. Hence, Rust drivers mark callback functions as
unsafe to prevent being invoked from safe Rust as invo-
cation may allow safe code to pass and get raw pointers
(Listing 15). While the entire interface function is marked as
unsafe, the actual uses of unsafe in the functions are limited
to type casts of raw pointers and converting reference-
counted handles.

Marker traits Rust compiler tries to derive marker traits
like Send and Sync. Derivation fails when the data structure
contains pointers since it is not possible to guarantee thread
safety when raw pointers are involved. If the developer
determines that the tait invariants still hold, they must ex-
plicitly assign those marker traits using unsafe (Listing 16,
lines 9–10).

Tagged unions In Rust, union types are C-compatible
unions that can only be accessed from unsafe code, since
there is no standard way to determine the variant stored in
the union. RFL relies on an unsafe function to discriminate
the type. An example from the Binder driver encapsulates
union accesses in small unsafe blocks with textual explana-



1 pub(crate) fn as_ref(&mut self) -> BinderObjectRef<'_>
{

2 use BinderObjectRef::*;
3 // SAFETY: The constructor ensures that all bytes of

`self` are initialized, and all
4 // variants of this union accept all initialized bit

patterns.
5 unsafe {
6 match self.hdr.type_ {
7 BINDER_TYPE_WEAK_BINDER | BINDER_TYPE_BINDER =>

Binder(&mut self.fbo),
8 BINDER_TYPE_WEAK_HANDLE | BINDER_TYPE_HANDLE =>

Handle(&mut self.fbo),
9 BINDER_TYPE_FD => Fd(&mut self.fdo),

10 ...
11 }
12 }
13 }

Listing 17: Unsafe union access in Binder

1 #[no_mangle]
2 unsafe extern "C" fn rust_binder_new_device(
3 name: *const core::ffi::c_char,
4 ) -> *mut core::ffi::c_void {
5 let name = unsafe { kernel::str::CStr::from_char_ptr(

name) };
6 match Context::new(name) {
7 Ok(ctx) => Arc::into_foreign(ctx).cast_mut(),
8 Err(_err) => core::ptr::null_mut(),
9 }

10 }

Listing 18: A function producing a foreign-owned Arc<T>

tions of the soundness (Listing 17, lines 5 to 12).

Foreign Arc<T> borrow RFL often passes Rust-managed
data structures as opaque pointers to C, including reference-
counted containers like Arc<T>. In our classification, we
treat function calls to perform this handoff separately from
other unsafe calls into kernel crate since programmer mis-
takes can induce reference counting errors. RFL introduces
the ForeignOwnable trait to model the transfer of owner-
ship to C (Listing 18). The into_foreign method (line 7)
converts an Arc<T> handle to a raw pointer without decre-
menting the counter, essentially transferring the increment
to C.

Device interface Unsafe operations are inevitable in low-
level hardware interfaces of the device drivers that com-
municate with hardware, e.g., NVMe. For example, in the
dev_add() function (Listing 19, line 1), 4096 bytes of DMA
memory are allocated, and later retyped as a reference to
NvmeIdNs with an unsafe type cast (line 11).

1 fn dev_add(
2 cap: u64,
3 dev: &Arc<DeviceData>,
4 pci_dev: &mut pci::Device,
5 admin_queue: &Arc<nvme_queue::NvmeQueue<nvme_mq::

AdminQueueOperations>>,
6 mq: &mq::RequestQueue<nvme_mq::

AdminQueueOperations>,
7 ) -> Result {
8 ...
9 let id = dma::try_alloc_coherent::<u8>(pci_dev, 4096,

false)?;
10 ...
11 let id_ns = unsafe { &*(id.first_ptr() as *const

NvmeIdNs) };

Listing 19: Unsafe casting from raw DMA memory to NVMe
namespace ID type

1 impl ScatterGatherState {
2 fn validate_parent_fixup(&self, ...) -> Result<

ParentFixupInfo> {
3 // ...
4 let sg_idx = self.ancestors[ancestors_i];
5 let sg_entry = match self.sg_entries.get(sg_idx) {
6 Some(sg_entry) => sg_entry,
7 None => {
8 pr_err!(
9 "self.ancestors[{}] is {}, but self.

sg_entries.len() is {}",
10 ancestors_i,
11 sg_idx,
12 self.sg_entries.len()
13 );
14 return Err(EINVAL);
15 }
16 };
17 // ...
18 }
19 }

Listing 20: Manual bounds check in scatter-gather list validation
in Binder

6. Use of Safe Programming Idioms
Mitigation of many vulnerabilities requires careful use

of safe programming idioms which we classify as Yes+P. To
understand how safe programming idioms are used in RFL,
we analyze kernel branches of Binder, AGX, and NVMe
for how they implement suggested programming techniques
aimed to mitigate vulnerabilities in Rust code. Again we use
Semgrep [71] on each branch to identify the use of each
specific idiom along with the manual analysis for special
cases.
Out-of-bound access For regular arrays and slices, access-
ing an out-of-bounds index via the index operator, i.e., [],
will trigger a panic due to an implicit bounds check. To
avoid the panic, the driver developer needs to either per-
form a bounds check or use fallible accessors like get for
array indices that may be out-of-bounds. In the case of
user-provided indices, we observe explicit bounds checks
being employed in the Rust Binder driver when validating
a scatter-gather list (lines 4–16, Listing 20).
Memory leak Section 4 suggests that drivers should care-
fully implement the Drop method to avoid memory leaks
as well as support the correct implementation of the kernel
de-registration protocol. While we observe that each of the
three drivers follows the suggested discipline, the semantics
of Drop implementation is often challenging. Memory leak
often occurs when the programmer forgets to call free over
the allocated memory. By implementing Drop, the program-
mer allows the Rust compiler to reason about the lifetime
of a variable and correctly deallocate resources.

When writing a custom Drop implementation that inter-
acts with externally-managed resources such as C objects
and objects in hardware, care must be taken to correctly
deallocate the resources given the current state. The AGX
driver implements the Mapping abstraction that corresponds
to a memory mapping in the AGX GPU which has its own
MMU and TLB. Its Drop implementation carefully reasons
about the state of the mapping and invalidates the TLB
entries (lines 2–22, Listing 21). Arguably, complex Drop

traits might be prone to potential vulnerabilities. Ideally,
formal methods should be used for careful reasoning about



1 impl Drop for Mapping {
2 fn drop(&mut self) {
3 // prot::CACHE means "cache coherent" which means

*uncached* here.
4 if self.0.prot & prot::CACHE == 0 {
5 self.remap_uncached_and_flush();
6 }
7
8 let mut owner = self.0.owner.lock();
9

10 if owner
11 .unmap_pages(self.iova(), UAT_PGSZ, self.size()

>> UAT_PGBIT)
12 .is_err()
13 {
14 // ...
15 }
16
17 if let Some(asid) = owner.slot() {
18 // invalidate tlb
19 mem::tlbi_range(asid as u8, self.iova(), self.

size());
20 mem::sync();
21 }
22 }
23 }

Listing 21: Drop implementation in the AGX GPU driver

1 fn probe(
2 pdev: &mut platform::Device,
3 id_info: Option<&Self::IdInfo>,
4 ) -> Result<Arc<DeviceData>> {
5 ...
6 let cfg = id_info.ok_or(ENODEV)?;
7 ...
8 }

Listing 22: Implicit error check with ? in AGX GPU driver

the correctness of such code. We argue that low-burden
verification of Rust code can become practical in the near
future [17].
Option type (NULL pointer dereference, use-after free,
pointer errors) Option types are used in RFL drivers to
represent possible non-values, e.g., NULL references, unini-
tialized data structures, pointer errors, etc. For example,
Listing 22, line 6 shows a common programming idiom
used in Rust to handle option type. The driver uses ok_or

to convert the optional value to Result<T> to signal the
“Operation not supported by device” error if id_info is None
(similar to NULL in C). To ease error handling, Rust provides
the question mark operator (?) to unwrap a Result<T, E>

type. The ? operator is a syntactic sugar to return early with
the error value in case of an error.

Alternatively, the driver can choose to handle each case
of the Option<T> type explicitly with a match construct,
like in the fault handler of the AGX GPU driver (lines 3–6,
Listing 23).
Integer overflow and underflow To mitigate potential pan-
ics resulting from integer overflow, the driver code should

1 fn handle_fault(&self) {
2 ...
3 let error = match self.get_fault_info() {
4 Some(info) => workqueue::WorkError::Fault(info),
5 None => workqueue::WorkError::Unknown,
6 };
7 self.mark_pending_events(None, error);
8 self.recover();
9 }

Listing 23: Explicit result check in the AGX GPU fault hanlder

1 pub(crate) fn read<T>(&self, offset: usize) -> Result<T
> {

2 if offset.checked_add(size_of::<T>()).ok_or(EINVAL)?
> self.limit {

3 return Err(EINVAL);
4 }
5 self.alloc.read(offset)
6 }

Listing 24: Use of checked arithmetics in Binder

use explicit arithmetic checks such as checked_add. The
three drivers only occasionally implement such checks,
which means that panics due to overflows are likely possible.
Listing 24, line 2 shows an example of checked_add in
android binder allocation code. The read method takes an
offset and an argument of type T and adds the size of T

with the offset. It then converts the Option<T> type into
Result<T, E> to signal the “Invalid Argument” error when
an overflow occurs.
Reference counting Rust supports automatic reference
counting and resource cleanup. With this extra feature comes
extra complexity at the kernel-driver boundary. A devel-
oper must take great care when implementing reference-
counted abstractions that are shared with C. For example,
in the Rust NVMe driver, block requests are modeled as
Request<T> types which can be moved to and from C. The
main complexity in its AlwaysRefCounted implementation
lies in its own reference counter which has special semantics
depending on whether C or Rust owns the object. When
Rust owns the object, the atomic reference counter must be
strictly greater than zero.

7. Conclusions
The development of device drivers in a safe program-

ming language could potentially change the balance of se-
curity in the kernel. Our work analyzes the impact of safety
on the security of the driver subsystem if re-implemented
in Rust. We agree that the promise of RFL is attractive:
Rust can eliminate a significant fraction of vulnerabilities
currently present in unsafe device drivers. Nevertheless,
most vulnerabilities require careful programming discipline
to be fully mitigated by Rust. We hope that our work can
improve understanding of potential flaws and vulnerabilities
in RFL and, hopefully, result in a more secure kernel.

Artifacts
We release all data used in this paper along with

automated scripts and instructions required to reproduce
results of the paper as a publicly-hosted Git repository
(https://github.com/mars-research/rfl-artifacts).
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Reuther, Martin Pohlack, and Alexander Warg. An
I/O architecture for microkernel-based operating sys-
tems. Technical report, TU Dresden, Dresden, Ger-
many, 2003.

[39] Heiser, G. and Elphinstone, K. and Kuz, I. and Klein,
G. and Petters, S.M. Towards trustworthy computing
systems: taking microkernels to the next level. ACM
SIGOPS Operating Systems Review, (4):3–11, 2007.

[40] Jorrit N Herder, Herbert Bos, Ben Gras, Philip
Homburg, and Andrew S Tanenbaum. MINIX 3: a
highly reliable, self-repairing operating system. ACM
SIGOPS Operating Systems Review, (3):80–89, 2006.

[41] Hohmuth, M. and Peter, M. and Härtig, H. and
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