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Abstract
Device drivers and kernel extensions have long been con-
sidered one of the main sources of defects in the kernel. In
the past, complexity of driver execution environment and
their internal logic kept them beyond the reach of formal
verification. We argue, however, that recent advances in sys-
tems programming languages, and automated verification
make a leap forward toward enabling practical development
of verified kernel code. Verified Linux drivers (Veld) is a new
device driver framework for Linux that leverages Rust and
Verus for development of formally correct device drivers.
High-level of automation offered by Verus allows us to side-
step traditional burden of verification and instead focus on
challenges related to verification of driver code: expressing
complex model of the driver, kernel and hardware inter-
faces, support for verification of concurrent driver code, and
integrating with the low-level interface of the kernel. We
develop all code in Rust and prove its functional correctness,
i.e., refinement of a high-level specification with Verus. Our
early experience with developing Veld and verifying parts
of the model-specific register (MSR) driver demonstrates the
possibility of device driver verification.

CCS Concepts: • Security and privacy → Operating sys-
tems security; Logic and verification; • Software and its
engineering→ Runtime environments; Formal software
verification.
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1 Introduction
Device drivers have long been considered one of the main
sources of defects and vulnerabilities in the kernel [11, 28].
Today’s Linux 6.5 kernel contains around 9,921 device drivers
that account for 70% of its source code [25], a number that
has doubled since 2014. While the core kernel is relatively
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stable, the number of device drivers is large and continues to
grow with every new generation of hardware. An empirical
study of faults in the Linux kernel by Chou et al. found that
in 2001 device drivers contained seven times more faults
compared to other subsystems [11]. In the last two decades,
improved automated testing, fuzzing [12, 15, 9, 29, 33, 30,
26, 34, 38, 37, 26] and static analysis [6, 3, 4, 5, 32] improved
device driver flaw density significantly. Nevertheless, device
drivers remain one of the three kernel subsystems with the
highest flaw density along with architecture layers (./arch)
and file systems (./fs) [28].
Historically, complexity of the driver code kept device

drivers beyond the reach of formal verification [1]. Drivers
execute in a concurrent and reentrant environment, expose
asynchronous communication interfaces require implemen-
tation of complex object lifetimes which combine reference
counting and manual memory management, implement con-
current dynamic unplug and replug protocols, and employ
a range of low-level optimizations to achieve optimal per-
formance. While several projects attempted verification of
the driver code [31, 17, 10, 2, 36, 27] it largely remained
impractical.
We argue, however, that recent advances in automated

formal reasoning significantly lower the burden of verify-
ing low-level systems code hence creating an opportunity
for practical development of verified device drivers. Specifi-
cally, recent verifiers combine properties of linear types with
automated verification based on satisfiability modulo theo-
ries (SMT) [20, 24, 19]. Linear types significantly lower the
burden of reasoning about the heap due to a strict pointer
aliasing discipline. Moreover, verifiers like Verus [20, 19] na-
tively support verification of Rust, a programming language
designed for systems development, hence enabling practical
verification of driver code that can then be compiled and
executed on bare metal.

Our work leverages Verus [20, 19], a new SMT-based ver-
ifier for Rust, for exploring the possibility of developing
verified device drivers in the Linux kernel. Verus translates
Rust code into an SMT formula that is then checked by the
Z3 solver [13]. Similar to previous SMT-based verifiers [8,
21, 35], Verus provides a high level of proof automation and
verification speed – in many cases the SMT solver can prove
the verification condition automatically, but in some cases
requires hints in the form of assertions and inductive proof
functions.
High-level of automation offered by Verus allows us to

sidestep traditional burden of verification and instead fo-
cus on challenges related to verification of the driver code.
First, we develop techniques of integrating Verus with the
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Linux kernel. Device drivers communicate with the kernel
by exchanging a collection of data structures that utilize a
number of low-level programming idioms: sharing hierar-
chical data structures by reference, utilizing polymorphism
via void* and union types, relying on unsafe type casts for
nested data structures and container_of, managing lifetimes
with reference counting, and maintaining endless low-level
invariants about semantic properties of each data structure.
The majority of the kernel-driver interface is unsafe and
has to be explained to Verus, which is limited to reasoning
about the safe subset of Rust. We develop techniques for
expressing safety and correctness of low-level accesses to
raw C types via a collection of safe Rust wrappers and Verus
specifications.

Second, we explore the ways of modeling execution envi-
ronment of the driver and its interaction with asynchronous
and concurrent invocations and updates from the operat-
ing system and the hardware. Device drivers execute in a
concurrent and re-entrant environment of the kernel. After
registration, the operating system can invoke any function
of the driver interface concurrently from multiple threads
at any moment as long as the invocation is allowed by the
protocol of the kernel-driver interface. User threads access
device drivers via the system call interface. Kernel threads
invoke device drivers to implement interrupt processing and
a range of periodic tasks. Moreover, the hardware can change
its state concurrently with respect to the execution of the
driver. To reason about correctness of the driver we develop a
model of its execution environment that captures concurrent
execution of the kernel and the hardware.

Finally, to support development of concurrent driver code,
we explore Verus abstractions for read-write locks that allow
us to reason about correct accesses to the state of the driver
shared across multiple threads as well as to avoid deadlocks.
Our work presents an early prototype of a device driver

framework, Veld (verified Linux drivers), designed to provide
environment for development of verified device drivers for
Linux. We develop a partial implementation of a verified
model-specific register (MSR) driver. Specifically, we build
all code in Rust and prove its functional correctness, i.e., re-
finement of a high-level specification with Verus. Our initial
experience shows that development of verified device drivers
is practical.

2 Background
Modern operating systems implement device drivers as

dynamically loaded kernel extensions. For example, Linux
device drivers are object files (ELF binaries) compiled and
linked separately from the core kernel. While some systems
deploy well-contained driver frameworks like IOKit in Ma-
cOS [22], in Linux device drivers are free to call any function
exported by the kernel (e.g., anything from memory alloca-
tion and device registration to specialized subsystem-specific
helper functions). The kernel, however, does not invoke the

1 static ssize_t msr_read(struct file *file, char __user *buf,
2 size_t count, loff_t *ppos) {...};
3
4 static const struct file_operations msr_fops = {
5 .owner = THIS_MODULE,
6 .read = msr_read,
7 .write = msr_write,
8 .open = msr_open,
9 .unlocked_ioctl = msr_ioctl,
10 };
11
12 static const struct class msr_class = {
13 .name = "msr",
14 .devnode = msr_devnode,
15 };
16
17 static int __init msr_init(void)
18 {
19 int err;
20
21 if (__register_chrdev(MSR_MAJOR, 0, NR_CPUS, "cpu/msr", &

msr_fops))
22 {
23 pr_err("unable to get major %d for msr\n", MSR_MAJOR);
24 return -EBUSY;
25 }
26 err = class_register(&msr_class);
27 if (err)
28 goto out_chrdev;
29
30 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/msr:online",

31 msr_device_create, msr_device_destroy);
32
33
34 if (err < 0)
35 goto out_class;
36 cpuhp_msr_state = err;
37 return 0;
38
39 out_class:
40 class_unregister(&msr_class);
41 out_chrdev:
42 __unregister_chrdev(MSR_MAJOR, 0, NR_CPUS, "cpu/msr");
43 return err;
44 }

Figure 1. The MSR driver’s init function and interface.

functions of the driver directly. Instead, each driver is re-
sponsible for registering a collection of function pointers
with the kernel that implement the driver’s interface.

To illustrate a typical driver boundary and the challenges
it presents for driver verification, we consider an example of
a simple device driver that provides a high-level interface to
access model-specific registers (MSRs) on Intel CPUs in the
Linux kernel (Figure 1). Execution of every driver starts with
the init() function that is called by the kernel when the driver
is loaded. The init() function of the MSR driver (lines 17–44)
registers an interface of a “character” device (lines 4–10). In
general, interfaces encapsulate device driver functionality,
e.g., all network drivers hide device-specific packet handling
code behind a general network interface. The interface of the
driver (lines 4–10) consists of a collection of function pointers
that implement its interface. A device driver and the kernel
communicate by exchanging references to hierarchical data
structures, e.g., the interface of a character device is centered
around the struct file data structure that represents a file.
For example, to read an MSR, the driver uses a file pointer
struct file *file to retrieve the CPU identifier from the minor

2



number of the file, and the MSR address from the offset
within the file loff_t *ppos. The driver returns the value of the
MSR to the user via a buffer pointer char __user *buf.
The operation of the driver is fully concurrent and asyn-

chronous. For example, the kernel can open the interface of
the MSR driver multiple times (via the open() function, line 8)
and invoke the driver concurrently from multiple threads
on multiple CPUs. Moreover, the hotplug interface (lines 30–
31) which driver registers with the kernel allows the kernel
to change hardware availability by taking CPUs down or
bringing them back up.

Verus Verus is a new SMT-based verifier for Rust [20]. To
ensure a high degree of ergonomics, Verus supports develop-
ment of executable code, specifications, and proofs directly
in Rust. Verus supports a large subset of Rust and introduces
minimal extensions for development of specifications and
proofs (for example Verus disables checking for linearity
to allow free use of linear variables, e.g., multiple times, in
specifications).
The key advantage of Verus is that it uniquely leverages

the properties of the linear type system [20]. First, Verus
relies on the linear type system to simplify its SMT encoding
and to dramatically lower lower complexity of reasoning
about the heap [20, 24]. For example, Verus encodes im-
mutably borrowed references and owned heap pointers as
plain values instead of references to memory. Moreover, lin-
ear types significantly lower the burden of verification by
avoiding a large number of memory invariants that are not
interesting in a typical case of unaliased objects [24].
Second, Verus provides an elegant way to reason about

raw pointers through an idea of linear permissions [20]. To
ensure the practicality of an otherwise linear language, Rust
allows escape from the ownership rules through its unsafe
subset, e.g., to implement doubly-linked lists, aliases, con-
current primitives, etc. Historically, reasoning about the un-
safe subset of Rust remained challenging [16] thus limiting
verification to safe Rust [7]. In contrast, Verus relies on a
combination of linear ghost permissions and SMT verifica-
tion to provide a safe and verified alternative to traditionally
unsafe pointer operations. Typically, operations on pointers,
e.g., dereferencing a pointer, are unsafe, i.e., in Rust such
operations bypass the borrow checker and break the rules of
the linear type system, which makes reasoning about them
problematic. Verus, however, offers an elegant abstraction
of permissioned pointers, i.e., PPtr<T>, and a linear tracked per-
mission type PointsTo<T> that allow proofs about raw pointers
in a convenient manner [20]. Specifically, to read from a
raw pointer one requires an immutable reference to the per-
mission corresponding to that pointer (writing requires a
mutable reference to the permission). Hence, accesses to raw
pointers follow the normal ownership model in Rust. This
allows us to use raw pointers like C, i.e., construct cyclic
data structures like linked lists. The ghost permission types

however allow us to prove that operations on pointers are
safe and match the abstract specification.

3 Veld Architecture
Verus allows us to carry development and verification in an
almost complete subset of Rust. Moreover, the verified code
that can be compiled and executed on bare-metal (or in our
case in the environment of the kernel). Furthermore, it is pos-
sible to integrate Veruswith the kernel build system to ensure
native kernel development: we implement a verified device
driver in the kernel tree (i.e., verify, compile, and install it)
in a manner identical to traditional driver development. The
verified driver is dynamically loaded into the kernel as a
kernel extension (i.e., Linux kernel module), which starts
execution with the init() function. Several design choices,
however, are important for enabling development and verifi-
cation of driver code.
Kernel interface Verus can only reason about safe Rust
types. Hence it requires an intermediate Rust layer to access
unsafe C types that are used by the kernel interface. Specifi-
cally, the interface of the kernel has to be explained to Verus
as a combination of safe Rust wrapper types, specifications
(pre and post conditions), and linear permissioned pointers
that allow Verus to establish correctness of unsafe pointer
operations at the level of the proof.

Different approaches are possible for developing such safe
wrappers. For example, it is possible to implement thin, C-
like interfaces that follow the design of existing kernel inter-
faces replacing C pointers with Verus linear permissioned
pointers. Such an approach enables development of a verified
Rust driver that closely follows C interfaces, and C code.

Alternatively, it is possible to embrace the idiomatic Rust
style and hide idiosyncrasies of low-level C behind high-level
Rust abstractions. The practical advantage of such approach
is that it has already been adopted by the Rust-for-Linux
(RFL) project, a recent device driver framework for Linux
that enables development of device drivers in Rust. RFL im-
plements Rust bindings for various kernel subsystems, e.g.,
network, block, non-volatile memory on PCIe (NVMe), etc.
Rust bindings expose safe interface to the unsafe interface of
the kernel. Specifically, RFL relies on bindgen [18] to auto-
matically generate foreign function interface (FFI) bindings
from the kernel header files. Bindgen takes in a C header file
and automatically translates the C structures and function
declarations to Rust-compatible structures and signatures.
The kernel developer uses these bindings to construct a

Rust library, i.e., a crate, which acts as a trusted layer, po-
tentially containing unsafe operations. This layer is written
in idiomatic Rust, utilizing Rust features such as traits and
templates to create convenient and safe abstractions for the
upper layers (i.e., the actual Rust driver which can be imple-
mented entirely in safe Rust).
From RFL to VFL In Veld we leverage RFL but change it in
several important ways. First, to expose safe Rust interfaces,
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1 impl VerifiedMajorRegistration {
2 pub fn register(&mut self, kernel: &mut KernelState) -> (ret:

bool)
3 requires
4 !kernel.registered(old(self).major, old(self).

base_minor, old(self).count) && ...
5 ensures
6 ret ==> kernel.registered(self.major, self.base_minor,

self.count) && ...
7 { ... }
8 }
9
10 fn init(kernel_state: &mut KernelState)
11 ...
12 {
13 let mut registration = VerifiedMajorRegistration::new(cstr!(

"msr"), MSR_MAJOR, 0, NR_CPUS);
14 registration.register(kernel_state);
15 assert(kernel_state.registered(MSR_MAJOR, 0, NR_CPUS));
16 ...
17 }

Figure 2. Registering a character device through wrapped RFL
types

RFL relies on a collection of run-time checks and human, nat-
ural language arguments about the safety of the code, e.g.,
correctness of reference counters, synchronization primi-
tives, iterators, etc. Such approach requires verified code
to trust RFL which sometimes requires complex reasoning
about the safety and logical correctness guarantees. In Veld
we use RFL wrapper types as minimal thin abstractions that
allow access to the C kernel interface but establish safety
and correctness of such accesses via a proof. For example,
in contrast to RFL, we avoid putting device deregistration
logic in the Drop methods and instead require the driver to
explicitly unregister with the kernel when requested.
Second, we make simplifications and extend RFL types

with Verus specifications that describe the expected behavior
of each type. For example, each character device (cdev) in
Linux is identified by a major number and a minor number.
The __register_chrdev and __unregister_chrdev functions, respec-
tively, register and unregister a cdev identified by a given
major number and a range of minor numbers. In VFL, char-
acter device registrations are modeled as the MajorRegistration

struct, where we make the simplification to only support
character devices that encompass the entire major number
(hence the name). Additionally, we assume that no other dri-
ver will attempt to unregister the major number: Calling the
register functionwill guarantee the caller that the registration
remains valid until deregistration. Figure 2 shows a snippet
of the register function where we encode our assumptions
about the kernel state in the KernelState struct.

Veld, however, benefits from automation provided by RFL.
For example, we utilize procedural macros provided by RFL
for generation of virtual tables which abstract C function
pointers behind safe Rust traits. For each C function in a
given virtual table, RFL implements a trusted trampoline that
performs type casting and invokes the correspondingmethod
in safe Rust. The procedural macro exposes missing methods

1 pub enum OSStep {
2 CpuOnline {cpu_id:CpuId},
3 CpuOffline {cpu_id:CpuId},
4 Init {},
5 Exit {},
6 ...
7 }
8 pub enum CPUStep {
9 Read {cpu_id:CpuId, addr:MsrAddress},
10 Write {cpu_id:CpuId, addr:MsrAddress, value:u64},
11 }
12 pub enum DriverStep{
13 Read{cpu_id:CpuId, addr:MsrAddress, ret:Result},
14 Write{cpu_id:CpuId, addr:MsrAddress, value:u64, ret:Result},
15 RegisterCharDev {major:u64, baseminor:u64, minorct:u64, name:

String, ret:Result},
16 UnRegisterCharDev {},
17 RegisterClass {name:String, ret:Result},
18 UnRegisterClass {},
19 RegisterCpuHotPlugEvent {event:cpuhp_state, name:String, ret:

Result},
20 UnRegisterCpuHotPlugEvent {},
21 RegisterDev {cpu_id:CpuId, name:String, number:u64, ret:

Result},
22 UnRegisterDev {cpu_id:CpuId, name:String, ret:Result},
23 RegisterDevNode {cpu_id:CpuId, name:String, number:u64, ret:

Result},
24 UnRegisterDevNode {cpu_id:CpuId, name:String, ret:Result},
25 SetAllowWrites {value:AllowWriteMsrs},
26 Open {file:File},
27 Close{file:File},
28 ...
29 }

Figure 3. Partial steps of the state machines modeling operating
system, CPU, and the driver

in the Rust implementation so they can be represented as
null pointers in the virtual table.
Standard library and memory management Verus sup-
ports use of the standard library via a collection of trusted
bindings to unverified standard library types. While the use
of the core types from the standard library is a practical
choice (e.g., recent Verus-based verification projects like
Verismo [39] choose to trust the standard library), we avoid
such trust in Veld and instead, develop the driver with a
collection of types that we verify. We, however, choose to
trust the kernel memory allocator.
Synchronization and concurrency To support verification
of concurrent and reentrant driver code, i.e., drivers that can
be concurrently accessed from multiple threads of execu-
tion on multiple CPUs, and be preempted by interrupts, we
leverage Verus support for tracked permissions. Specifically,
each thread is given a unique, unforgeable tracked thread
identifier permission before entering the driver. We then
protect access to the shared driver state with a read-write
lock that returns a thread-local read/write permission that is
tied to the lock. The thread must provide the lock permission
before accessing the shared driver state.

4 Verification
Specifications We use specifications to capture both pos-
sible behavior of the driver environment (i.e., concurrent
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changes of the hardware, concurrent invocations of the dri-
ver by the kernel) and correct behavior of the driver itself.
We model the environment of the driver – the operating sys-
tem and the hardware – as a collection of state machines that
each can take arbitrary steps (Figure 3), e.g., change the state
of the hardware, change the state of the kernel, and invoke
functions of the device driver, etc. To model the expected
behavior of the driver, we develop a model of the driver’s
abstract state and define how it is evolving on each state
transition, i.e., reflecting the change in the kernel, hardware,
or the driver through invocation of its methods.

To define the abstract model of the system, we utilize Verus
ghost variables, i.e., Set<Driver>, that represent the abstract
model of the concrete system state, a set of registered device
drivers in the kernel. We then define the high-level behavior
of the system as a collection of specification functions which
describe how this abstract state is updated on each state
transition, i.e., invocation of the driver, hardware update,
etc.
To establish the functional correctness of the driver, we

prove a refinement theorem, i.e., the implementation of the
driver refines its abstract state. That is, invocation of the
driver results in a state of the driver that is equivalent to the
change in the high-level specification. Specifically, to prove
refinement, we establish equivalence between the abstract
and concrete state of the system, and proof that equivalence
holds on each state transition.
Operating system Our model captures the high-level be-
havior of the operating system with respect to the driver. For
example, the character driver likeMSR follows the kernel reg-
istration protocol. After the driver is registered, its interface
can be invoked from any thread of the system. Specifically,
a thread can open a file that reserves a handle for future
read and write operations. Moreover, even if the driver is
unregistered, all opened file descriptors remain functional,
allowing the threads to access the driver. The kernel will not
allow to open new file descriptors. The kernel implements a
reference counting protocol that uses two counters to keep
track of the references to the character device and its backing
kernel module.
Our model captures registration, hotplug, and file open

protocols. We represent the state of the kernel as a high-
level abstract state, e.g., an arrays of drivers registered for a
specific major and minor numbers. We also model the kernel
reference counters to properly reflect the behavior of the
kernel.
We also use the abstract state of the kernel to properly

define the correct behavior of the driver. For example, the
post-condition for the initialization function of the driver
requires the driver to be registered (or leave the kernel in a
clean state in case of an error). The driver hence has to in-
voke functions of the kernel interface, e.g., register character
driver, register class, etc. Each of these functions updates the
abstract state of the kernel.

The state machine of the kernel can take any of the al-
lowed steps (i.e., open the driver multiple times from multi-
ple threads as long as the driver is registered, unplug CPUs,
and change properties of the driver via the kernel module
parameter interface, etc.).

Hardware The hardware operates asynchronously and con-
currently with the drivers’ execution. In our model, the hard-
ware can take any of the possible transitions while the driver
code is running (i.e., it can read MSRs written by the driver,
and update the values of other MSRs to reflect the change). In
the case of the MSR driver, the values of the model-specific
registers can change between reads as long as the change
matches the expected behavior of the hardware.
Arguably, a complete hardware model of the MSR inter-

face should model the functional behavior of each MSR as
well as the dependencies between them. For example, the
IA32_APIC_BASE MSR holds the base address of the Advanced
Programmable Interrupt Controller (APIC) as well as a bit to
toggle the x2APIC (Extended xAPIC) feature. Clearing this
bit will make MSRs related to x2APIC (e.g., IA32_X2APIC_APICID)
inaccessible.
Unfortunately, constructing a complete hardware model

for MSRs is challenging. Historically, Linux sidesteps the
problem by allowing the MSR driver to execute illegal MSR
accesses that result in exceptions. The kernel, however, has
a specific path to catch such exceptions turning them into
I/O errors returned from the low-level MSR read and write
functions. This allows the driver and the entire kernel to
avoid a crash.
We develop a partial model for a small subset of MSRs.

This allows us to develop a driver that avoids illegal hardware
accesses resulting in hardware exceptions.

Synchronization primitives To support verification of con-
current code that synchronizes access to shared state, we
develop abstraction of a read-write lock (Figure 4). Our read-
write lock follows the design of a C-style read-write lock
which allows us to implement critical sections. In contrast to
a guard returned by a typical Rust mutex, our lock returns a
read or write permission to access the objects protected by
the lock. To acquire a lock, the thread provides a thread iden-
tifier permission which is unique and unforgeable (generated
by the TCB for a specific thread). This permission allows us
to distinguish the steps taken by different threads. To distin-
guish different locks, each lock maintains a unique identifier
(this allows us to prove that access permission acquired from
one lock cannot be used in place of another lock). Moreover,
the lock permissions cannot be passed between threads.

We divide the specifications of synchronization primitives
into two categories: global and local. For example, globally,
we know that a variable does not change unless a thread
holds a write lock allowing it to mutate the variable. Local
specifications ensure the correct use of locks by one thread,
e.g., the thread cannot acquire the lock twice, it has to release
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1 pub fn acquire_read(&mut self, Tracked(t_id_perm): Tracked<&
ThreadIDPerm>)

2 -> (ret: Tracked<ReadLockPerm>)
3 requires
4 // local specs
5 old(self).thread_holds_no_lock(Tracked(t_id_perm)),
6 // global specs
7 old(self).reading_threads().contains(t_id_perm@) == false,
8 ensures
9 // local specs
10 self.thread_holds_read_lock(t_id_perm),
11 self.thread_holds_write_lock(t_id_perm) == false,
12 self.is_owner_of_read_perm(&ret@),
13 self@.thread_id() == t_id_perm@,
14 self.view_from_thread(t_id_perm).wf(),
15 // global specs
16 old(self).writing_thread().is_None(),
17 self.reading_threads() =~= old(self).reading_threads().

insert(t_id_perm@)
18 self.view_from_system() =~= old(self).view_from_system()

Figure 4. Specifications of the function that acquires a read lock

all the locks, etc. Note, however, that the moment the thread
releases the lock it cannot make assumptions about the state
of the variables protected by the lock as they may be changed
by other threads. Global specs though allow us to reason
about the global state of the system, e.g., which threads can
read and update which variables, their state, etc.
Driver In our model, an invocation of the driver is
not atomic (i.e., the hardware can change its state asyn-
chronously, the operating system can update the shared state
of the driver from another thread, etc.). Therefore, we model
driver invocations as multiple steps of the state machine.
This allows us to model all possible executions of the op-
erating system, hardware, and the driver as their smallest
steps and treat the driver as a state machine that can take
any valid step for the current state.

5 Implementation
Build system Verus extends the Rust compiler to perform
verification. Naturally, this ties Verus to a specific version of
Rust. Moreover, similar to Rust, the Verus standard library
and supporting crates are built using the Cargo build system.
Linux, however, integrates Rust (and its rustc compiler) with
its Makefile-based build system. Moreover, RFL relies on the
most recent version of Rust.

To decouple the toolchain versions and minimize changes
to the kernel build system, we perform the build in two
passes. In the verification pass, we build the annotated kernel

crate using the Verus toolchain with ghost code preserved.
The drivers are verified against this crate. During the compi-
lation pass, we rebuild the Verus standard library, the kernel

crate and the drivers with ghost code elided using the kernel
toolchain.

6 Status
We completed development of the Veld framework, i.e., inte-
gration with the kernel via VFL and the kernel build system.
We verified parts of the MSR and virtio drivers. For the MSR

driver, Verus finishes verification in under a minute. We do
not see a measurable slowdown compared to the unverified
C driver on a server-grade Intel Xeon machine although
complex Rust-based drivers are known to demonstrate some
overhead compared to C counterparts [14, 23].

7 Conclusions
Our early experience with Veld demonstrates that Verus
takes a huge step towards enabling practical (low-burden)
verification of device drivers in a full-featured Linux ker-
nel. While we verified only parts of relatively simple device
drivers, our techniques – approach to modeling concurrent
execution environment of the kernel and asynchronous hard-
ware, integration with unsafe kernel interfaces, and ability
to support concurrent driver code – are, arguably, general
and will enable development and verification of complex,
full-featured drivers.
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