Beyond Driver Isolation - Triaging Threats against Driver Isolation

Yongzhe Huang'!, Kaiming Huang!, Matthew Ennis',
Vikram Narayanan®, Anton Burtsev*, Trent Jaeger®, Gang Tan'

'The Pennsylvania State University - {yzh89, kzh529, mje5606, gtan}@psu.edu

2 Palo Alto Networks - {vinarayanan}@paloaltonetworks.com
3UC Riverside - {trentj}@ucr.edu
4University of Utah - {aburstev}@utah.edu

Abstract—Device driver isolation aims to protect kernels from
faulty/malicious drivers, yet its security guarantees are not fully
understood. Compartment Interface Vulnerabilities (CIVs),
known in userspace applications, also impact driver isolation,
but this area is underexplored. This paper surveys existing
driver isolation frameworks, systematizes CIV classifications,
and evaluates them in the driver isolation context. Qur analysis
reveals CIV prevalence under a baseline threat model, with
large drivers exhibiting over 100 CIV instances and an average
of 33 across the studied drivers. Enforcing additional security
properties like CFI reduces average CIVs to approximately 28.
This work offers insights into driver isolation security, CIV
prevalence, and guidance for future systems.

1. Introduction

Today’s Linux 6.5 kernel contains roughly 9,921 device
drivers, accounting for 70% of its source code [1]], nearly
doubling since 2013. Developed by third parties who often
lack a complete understanding of the kernel’s programming
and security idioms, device drivers are a primary source
of defects in modern OS kernels [13]]. With over 80,000
commits per year, the fast-evolving device driver codebase
constitutes the largest attack surface in modern kernels, mak-
ing up 16-59% of all reported Linux kernel vulnerabilities
since 2014 (Table T).

To prevent device driver flaws from impacting kernel
security, driver isolation has been proposed, with a history
dating back to the 1977 Multics report [36]]. This technique
runs drivers in an isolated environment, confining faults
and preventing single-point failures. While easily achieved
through clean-slate kernel redesigns [29], [37], [41], [66],
efforts have focused on isolating drivers from monolithic
kernels [18]], [45], [52], [54]], [62], [63]. However, many at-
tempts have failed due to the performance and the complex-
ity of breaking apart the kernel’s monolithic, shared-memory
code [20]], [45], [52], [54], [63]. Recently, the balance has
started to change with efficient hardware isolation mech-

Year  Total CVEs  Driver CVEs  Percentage
2014 130 22 16.9%
2015 30 15 18.8%
2016 216 65 30.1%
2017 452 267 59.1%
2018 180 44 24.4%
2019 291 154 52.9%
2020 129 38 29.5%
2021 162 42 25.9%
2022 310 92 29.7%
2023 263 75 28.5%

TABLE 1: Linux kernel CVEs versus those in its device drivers.

anisms, such as memory tagging [60] and VMFunc [23],
and scalable automated decomposition approaches, such as
static analyses for automating kernel-driver code and data
separation [21], [33]].

Despite recent advances, the security benefits of driver
isolation remain unclear. Isolation frameworks limit driver
privileges, but restrictions vary based on threat models.
For example, Nooks [63]] assumes buggy but not malicious
drivers, allowing isolated drivers to read kernel pages and
run privileged instructions, which cannot confine attacks
from malicious or compromised drivers. Understanding the
threat models and isolation guarantees of different frame-
works is therefore crucial.

It is also important to understand the attacks that are
still possible after isolation. Malicious drivers may still
compromise kernel compartments by exploiting the isolation
interface, as demonstrated by Lefeuvre et al. [38]] in com-
partmentalized user-space applications. These Compartment
Interface Vulnerabilities (CIVs) occur because compartmen-
talized components may still share/communicate data with
a domain that can be used to launch attacks. Chien et
al. [14] identify a specific type of CIVs for the kernel-driver
interface, showing that malicious isolated drivers can supply
corrupted data to kernel memory API calls, compromising
the confidentiality and integrity of kernel data. Other re-
searchers have identified additional security issues [7], [8]],
[14], [38], [50], suggesting more types of CIVs may impact
the kernel-driver interface. A comprehensive study of CIV



types and their impact on kernel security is needed.

CIVs pose significant threats to the kernel despite driver
isolation, but the effectiveness of attacks using CIVs varies
depending on the defenses applied in driver isolation. For in-
stance, a CIV enabling buffer index corruption may succeed
in frameworks lacking index validation, but can be mitigated
by those implementing shared data validation [59].

Given the variety of types of CIVs, evaluating them
under different threat models assuming diverse isolation pro-
tections is crucial. Previous studies, such as Conffuzz [38]],
estimated CIV prevalence based on a basic isolation model
with limited security properties, such as memory safety
and control flow integrity. Some driver isolation projects,
however, have multiple kinds of protections to enforce se-
curity properties on the isolation interface. As a result, it
is important to evaluate attack viability against more robust
driver isolation systems with enhanced security measures.

In this study we aim to answer the following questions:
(1) What are the security properties enforced by existing
driver isolation frameworks? (2) What are the types and
prevalence of CIVs at the kernel-driver isolation interface?
(3) How effective are the existing driver isolation frame-
works against the various types of CIVs? (4) How do secu-
rity properties enforced by software hardening techniques,
such as memory safety or CFI, reduce the threat of CIVs?

For answers, we provide a systemization of knowledge
(SoK) of the attack surface and defenses at the kernel-driver
interface and make the following contributions:

o We systemize the threat models and security properties
of existing driver isolation frameworks.

e We summarize and augment existing CIV classifica-
tions [14], [38], [50] with general and new driver-
isolation-specific CIV classes. We describe these new
classes with concrete examples.

o We develop static analyses to classify and quantify
CIVs for a set of representative drivers.

e We evaluate CIVs under a baseline threat model that
only assumes basic driver defenses and security proper-
ties. And we discuss how enforcing additional security
properties may help in mitigating CIVs.

Target interface We focus on classifying CIVs at the
kernel/driver isolation interface. However, the threat of CIVs
goes beyond and applies to any compartmentalized software,
including isolating other kernel components (e.g., the file
subsystem) and isolation in user-space programs. Our study
focuses on device driver isolation for several reasons. (1)
Kernel-driver interfaces are the de-facto isolation boundary
by the majority of previous kernel isolation frameworks
due to the high number of vulnerabilities and required
privileges in drivers. (2) Device drivers normally have clear
compartment interfaces to communicate with the kernel,
making analysis tasks easier, as we will discuss in detail
later in Section 2] (3) The driver and kernel interfaces nor-
mally pass large and complex objects, typically containing
heterogeneous types of data, making observations extracted
by studying device driver compartmentalization valuable for
compartmentalization in other domains with less complex

interface data. While we leave the study of CIVs on other
interfaces to future work, we believe that the conclusions
drawn in this study are generalizable to other kernel and
user-space interfaces.

2. Driver Isolation Overview

This section reviews existing driver isolation frameworks
for monolithic operating systems, classifying them by their
core isolation techniques. Our scope excludes microkernel-
based designs [22], [29], [37], [41]] and systems focused on
isolating general kernel modules [25]], [47], [55]. We have
identified twenty impactful projects in driver isolation from
major OS and security venues over the past two decades.
These systems are summarized in Table 2]

2.1. Sandbox architecture

All driver isolation frameworks assume a sandbox [38]
architecture, in which the kernel is trusted and the driver
is not. This is opposite to the safebox architecture [4],
[12], (161, [25[, [38], which instead assumes the isolated
component is trusted and should be protected from the rest.

2.2. Driver threat models

All the driver-isolation projects we have surveyed as-
sume two types of threat models:

1) Buggy: Many driver isolation frameworks [21]], [39],
[I52f, [54], [56], [63], [70] assume that a driver may
contain bugs that can cause the entire kernel to mal-
function or hang. This threat model primarily focuses
on the availability of kernel services, rather than con-
sidering an active attack scenario. The goal of isolation
in this context is to prevent a buggy driver from crash-
ing or hanging the kernel, ensuring that other kernel
services remain available.

2) Exploitable: Device drivers are commonly assumed to
contain bugs that can be exploited by an attacker to
compromise the kernel [6], [8], [1O], [18], [45], [60],
[[67]], [68]]. These bugs often allow the attacker to gain
powerful read or write primitives, which can be used
to compromise the confidentiality or integrity of the
kernel data. Isolation mechanisms aim to confine the
impact of such exploits to the isolated driver, preventing
the attacker from compromising the kernel.

2.3. Driver isolation boundaries

Traditionally, the device driver has two natural bound-
aries. The first is for driver/kernel interaction, and the other
is for driver/device interaction. The kernel/driver boundary
is formed by a set of kernel functions imported by the
driver, including kernel and device libraries, kernel ser-
vices, etc. [35]], and a set of functions the driver exports
to the kernel to extend the kernel’s functionality via a set
of function pointers and the EXPORT_SYMBOL macro. This
natural boundary is used as the de facto isolation boundary
between the kernel and a driver, with a few exceptions where



only a subset of the driver code is isolated [21]], [49]], [56].
The systems that choose a different isolation boundary do
so to address limitations of traditional isolation, such as
performance. For example, Microdrivers [21]], decaf [56],
and Twindrivers [49] leave performance critical driver code
inside the kernel to reduce domain switching overhead,
achieving better performance.

The driver/device boundary is defined by operations
that interact with the device hardware, including access to
memory-mapped I/O (MMIO) regions, I/O ports (on x86
architectures), Direct Memory Access (DMA), etc. [35].
By abusing the interaction with the device, a malicious
driver could potentially exploit the driver/device interface to
circumvent the isolation. For example, abusing DMA may
allow the driver to access any kernel memory through the
device. To mitigate this risk, some isolation projects [6],
[52], [[54] prevent devices from accessing arbitrary physical
memory via DMA using the IOMMU. While studying CIVs
for the driver/device interface is important, the device states
that can be corrupted by the driver are highly device-
dependent, e.g., each device has its own set of registers and
configurations. Therefore, we leave the study as future work.

2.4. Interface data

Even under isolation, drivers and kernels still communi-
cate by sharing data through the kernel/driver interface, typi-
cally via the arguments to and return values from invocations
to interface functions or through global variables. However,
not all data that could be referenced by the pointers passed
across the interface needs to be shared for correct execution.
For instance, when a reference to a complex structure is
passed through an interface function, it may be the case
that only a small subset of the structure’s fields are actually
needed. If a driver isolation framework imposes no restric-
tion on the data synchronization, it may lead to the problem
of oversharing. Various driver isolation projects propose
solutions to address this issue. Projects based on object
copying [6], [21]], [52]], [54], [56] choose to synchronize only
a subset of structured object fields required for correct ex-
ecution, primarily for improved performance. The required
fields are normally computed via manual efforts [6]], [52], or
static analyses [21]], [33]], [56]. SFI based techniques [[10],
[18], [45] allow developers to specify access capabilities at
fine-grained levels, e.g., a byte or field levels, to prevent
access on overshared data. Despite these efforts, addressing
oversharing issues remains challenging.

2.5. Driver isolation security properties

Because they assume different threat models, prior driver
isolation frameworks differ in the security properties that
they enforce. Below, we collect a set of security properties
that are enforced by those driver isolation frameworks.

P1: Kernel data integrity This property specifies that data
stored in the memory of the kernel compartment cannot be
directly updated by the driver compartments.

P2: Kernel data confidentiality This property specifies that
data stored in the memory of the kernel compartment cannot
be directly read by the driver compartments.

P3: Interface data integrity This property ensures integrity
of data exchanged through compartment interfaces. Even
with P1 enforcement, kernel and drivers must share data as
discussed in Section [2.4] If interface data is corrupted or
violates expected invariants, the kernel becomes vulnerable.
We discuss how failing to maintain this property leads to
multiple types of CIVs in Section [4]

P4: Interface control flow integrity A driver’s control flow
must remain confined within its code, except for invocations
of predefined kernel interface functions and returns to the
kernel call sites of driver functions.

Properties P1-P3 focus on data flow, while P4 addresses
control flow. Among these, P1 and P4 are enforced by all
driver isolation frameworks, as they directly address the
main goal of driver fault isolation across various threat
models. They prevent drivers from corrupting kernel data
directly and executing arbitrary kernel code. The remaining
properties (P2 and P3) are primarily considered in frame-
works that assume potentially malicious drivers. P2 prevents
driver from reading sensitive information from kernel, while
P3 ensures that all the shared data, even allowed to be legit-
imately updated by driver, cannot be corrupted , preventing
the injection of malicious or erroneous values. In addition
to aforementioned properties, some isolation frameworks
extend security to the driver:

P5: Driver control flow integrity This property is stronger
than P4, specifying that the driver’s control flow must ad-
here to a precomputed control flow graph. It constrains the
usage of kernel interfaces, mitigating potential attacks such
as use-after-free vulnerabilities [10], [38]], [57] that could
arise from arbitrary invocation sequences of kernel-driver
interface functions, even after P4 is enforced.

P6: Driver memory safety Memory safety can be intro-
duced to drivers in multiple ways: 1) utilizing memory-
safe programming languages, such as Rust [24]], [53] or
Java [56], or 2) extending the C type system to prevent
memory errors using compile-time or run-time checks [70].

3. Driver Isolation Frameworks

In this section, we examine various driver isolation tech-
niques and analyze the security properties they enforce.
We delve into the implementation details of these isolation
techniques to understand how they enable specific security
properties. Table [2] provides a comprehensive overview of
the frameworks that we have investigated. For each security
property, we indicate whether it is enforced, and, if so, we
describe the corresponding implementation mechanism.

3.1. Software-based Fault Isolation (SFI)

SFI-based techniques offer driver isolation without hard-
ware support by establishing distinct protection domains



Integrity

Framework Venue ™ KData Conf. ICFI DCFI MS Isolation Technique oS
KData IData
Nooks [63] SIGOPS EW’02 B PT N/A N/A WF N/A N/A MMU L
VM DrivReuse [39] OSDI'04 B GVA N/A GVA Translation N/A N/A VM (Xen) L
SafeDrive [70] OSDI’06 B MS N/A MS MS N/A Bounds Language L
XFI [18] OSDI'06 E Instr N/A N/A WF CFI guards N/A SFI w
Microdrivers [21] ASPLOS’07 B PM SC PM IPC N/A N/A User-mode L
TwinDrivers [49] ASPLOS’09 B SVM N/A SVM PE N/A N/A VM (Xen) L
Decaf [56] ATC’09 B PM SC PM IPC N/A N/A User-mode+Safe Lang L
Microdriver+ [8] ACSAC’09 E PM SC PM IPC N/A N/A User-mode+Daikon L
BGI [10] SOSP’09 E Instr Cap Cap WF CFI guards  Byte-CAP SFI w
SUD [6] ATC’10 E PM N/A PM IPC N/A N/A User-mode L
HUKO [68] NDSS’11 E MAC N/A MAC PE N/A N/A VM (Xen) L/W
LXFI [45] SOSP’11 E CAP N/A CAP CAP CAP+SS N/A SFI L
SIDE [62] DSN’13 B PM N/A PM WF N/A N/A User-mode L
LXDs [52] ATC’19 B GVA e GVA IPC N/A N/A VM (KVM) L
LVDs [54] VEE’20 B GVA SC GVA IPC N/A N/A VM (Bareflank) L
IskiOS [25] RAID’21 E PKU/PKK N/A N/A N/A SS N/A Protection keys (PKK) L
KSplit 33| OsDI'22 B GVA SC GVA RPC N/A N/A VM (Bareflank) L
HAKC [48] NDSS’22 E MTE N/A MTE PAC policy N/A N/A MTE + PAC A
DriverJar [67] DAC’23 E TR N/A N/A PE N/A N/A Hardware watchpoint A
Sfitag [60] Asia CCS’23 E Tag N/A Tag WF+tag N/A N/A Memory tagging A
Bulkhead [26] NDSS’25 E PKS N/A PKS PE N/A N/A PKS L

TABLE 2: Existing driver isolation frameworks, their threat models (B: Buggy, E: Exploitable), and enforcement techniques for security properties P1-P6.
Integrity is split into Kernel (KData) and Interface (IData). ICFI and DCFI stand for interface CFI and driver CFI. Techniques: SC (Selective copy), PE
(Predefined entries), PT (Page table), PM (Privilege Mode), TR (Trampoline), MS (Memory Safety), Instr (Instrumentation), MAC (Mandatory Access
Control), SVM (Software Virtual Memory), GVA (Guest Virtual Address), CAP (Capability), SS (Shadow Stack), WF (Wrapper Function). OS: L (Linux),

W (Windows), A (ARM-based).

within a shared address space using static analysis and inline
software guards for runtime checks [64], [[65]. Recent ad-
vances in SFI have achieved remarkably low overheads (un-
der 10%) while maintaining strong isolation guarantees [S1]],
[69]. Notable examples include XFI [[17], BGI [11]] for Win-
dows, and LXFI [46| for Linux. Recent advancements focus
on enhancing SFI performance using hardware features like
ARM MTE [60]] and PAC [48]].

To enforce P1, SFI instruments driver memory instruc-
tions to restrict access within the driver’s domain or ex-
plicitly granted memory ranges, configured by a trusted
monitor or capabilities [46]. P4 is enforced by instrumenting
Jjump instructions, restricting targets to the driver’s domain
or preconfigured addresses. Violations trigger a fault and
module restart. XFI and LXFI enforce additional properties,
assuming potentially malicious drivers. XFI incorporates a
verifier for P5 but don’t check interface data, thus fail to
enforce P3 [[17]. LXFI addresses this with API integrity
via developer-supplied annotations for P3 and ensures these
checks cannot be bypassed by enforcing P5 [46]. LXFI
achieves this by using a combination of capability and
shadow stack. BGI assumes a buggy driver model, imple-
menting a superset of XFI's runtime checks while assuming
unaltered control flow, balancing security and performance
for bug-focused scenarios. Since BGI allows assigning capa-
bility at byte-granularity level, it can theoretically achieves
memory safety if all the memory access rights are con-
figured correctly by the developer. In general, SFI-based
architectures ignore instrumentation on memory reads for
performance, thus not enforcing P2.

3.2. Language-based driver isolation

Language-based driver isolation enforces memory safety
(P6) within drivers using type systems or safe programming
languages [24]], [53], [70]]. SafeDrive [[70] uses a type system
to prevent pointer bounds errors through compile-time and
runtime checks, relying on annotations that can be partially
inferred and supplemented by developers to ensure the safety
of memory access types, including pointer bounds and union
selectors. With complete annotations, SafeDrive detects and
prevents all memory errors within the driver, enforcing P6.
Consequently, it achieves key security properties of other
driver isolation frameworks: P1 and P2 are enforced because
the driver cannot directly corrupt or read kernel private data
through memory bugs, and P4 is easily enforced since the
driver cannot corrupt function pointers or return addresses,
ensuring communication with the kernel only through pre-
defined interface functions. However, SafeDrive does not
enforce the remaining security properties. Similarly, rewrit-
ing drivers in safe languages like Rust [24], [53]] achieves
comparable isolation guarantees.

3.3. User-mode drivers

User-mode drivers run driver code in userspace pro-
cesses, leveraging hardware privilege separation (Ring 0/3)
to prevent direct driver access to kernel memory, inher-
ently enforcing P1 [6], [21], [56]. Communication between
userspace drivers and the kernel is performed through
message-based channels, such as system calls in Micro-
drivers [21] and Decaf [56], or RPC in SUD [6]. This
restricted interface approach inherently enforces P4, limiting
drivers to invoke kernel code through predefined interfaces.

In user-mode drivers, data is passed via messages, main-
taining separate object copies in the driver and kernel,



synchronized during cross-domain invocations. However,
deep copying large and complex kernel objects at each
domain crossing incurs high runtime overhead. Therefore,
object synchronization across boundaries is typically se-
lective, focusing on fields critical for correct execution.
Microdrivers [21]] and KSplit [33] employ static analysis
to automate the identification of necessary fields.

Although primarily motivated by performance, object
copying also facilitates enforcing P1 and P2 by not synchro-
nizing kernel private data. P3 is not enforced for most of
user-mode driver isolation projects, but an extension to the
Microdriver architecture [8)] infers and checks data invari-
ants during domain crossings using the dynamic invariants
inference tool Daikon [[19]. User-mode driver architectures
generally do not explicitly address P5 or P6.

3.4. Page table switching

Multiple projects utilize MMU to establish distinct page
tables for different compartments. Nooks [63]] employs page
tables to enforce isolation, allowing kernel code unrestricted
access to the driver’s memory while restricting the driver’s
write access to kernel private data (P1). However, to syn-
chronize kernel updates, Nooks allows the driver to read the
kernel’s page table and copy the data to its compartment,
therefore violating P2 (kernel data confidentiality). Nooks
provides wrapper functions for cross-domain invocations
but do not enforce control flow integrity. Invocations from
the driver to kernel are not guaranteed to jump to these
wrapper functions, and thus both P4 and P5 are not enforced,
allowing attacks like Page-Oriented Programming [27] to
hijack control flow. Nooks does not enforce P3 as it doesn’t
limit or check data passed through the interface.

SIDE [62] uses MMU to run drivers within the kernel
address space, allocating a specific region for each driver
with user-level privilege. The isolated driver has its private
stack and heap within this region. SIDE enforces P1 and
P2, as unprivileged driver access to the kernel triggers a ring
exception, invoking a handler to validate the access. Control
transfers across isolation domains generate ring exceptions,
allowing the handler to verify the transfer’s legitimacy (P4).
However, SIDE does not address P3, P5, or P6.

3.5. Virtualization

Virtualization provides a natural way to run untrusted
code, and various driver isolation frameworks based on
virtualization have been developed [39]], [49], [52], [54],
[68]. In an early demonstration, LeVasseur et al. [39] used
Xen virtualization to run buggy device drivers along with a
native OS in an unprivileged domU VM, with a translation
module added to the driver’s OS to serve as a server for
external requests. This design achieves P1 and P2 due to VM
isolation, and P4 by using a specified set of functions for
communication between the driver and the external system.

Twindrivers [49], also built on Xen, employs an isola-
tion boundary similar to [21f], running performance-critical
functions within the hypervisor domain and the remaining

functions in the dom(O domain. It uses software virtual
memory (SVM) to restrict hypervisor instance accesses to a
single object in the dom0 instance’s address space, enforcing
P1, P2, and P4 through predefined upcalls and hypercalls.
Other hypervisors, such as KVM in LXDs [52] and
Bareflank in LVDs [54]], have also been used for driver iso-
lation. LVDs optimize cross-VM communication using Intel
VMFUNC instructions, avoiding the overhead of trapping to
the hypervisor on every interaction. In these approaches, the
memory accessible by the driver is limited to the VM virtual
address space, and control transfers out of the driver must go
through the hypervisor, enforcing P1, P2, and P4. However,
it is worth noting that some of these projects perform
selective copying, such as LVDs and KSplit. This approach
may reduce the fields that required integrity checking (P3).
However, P3 is generally not considered enforced.

3.6. Memory tagging

Memory tagging augments code and data with fags,
which function as security metadata on memory. These tags
are used to enforce memory access policies [34]. At a high
level, memory tagging establishes isolation domains similar
to SFI-based techniques. However, memory access opera-
tions are checked via hardware with much lower overhead
(with an average of < 5% compared to native systems).
The most commonly used memory tagging mechanisms are
ARM MTE [3] and Intel MPK [15]].

Sfitag [60] utilizes ARM MTE for driver isolation, en-
forcing the same security properties as SFI techniques (P1
and P4). The lower overhead of hardware-based checking
enables Sfitag to instrument memory read instructions, thus
enforcing P2, which SFI-based approaches typically omit for
performance. HAKC [48] employs both MTE and Pointer
Authentication Codes (PAC). MTE assigns 4-bit "colors"
to mark memory ownership, while PAC cryptographically
signs pointers to prevent tampering. The system organizes
code into cliques (partitions with assigned colors) and com-
partments (collections with unique identifiers). Before deref-
erencing pointers, HAKC verifies signatures computed from
color tags and the compartment context; access is defined
for mismatched signatures, enforcing P1 and P2. Cross-
compartment transfers recolor memory and resign point-
ers, with entry tokens defining valid transitions to enforce
P4. However, P3, P5, and P6 are not enforced. Multiple
frameworks utilize Intel MPK for compartmentalization.
Bulkhead [26]] uses protection keys for supervisor mode
(PKS) with registered switch gates whose metadata is stored
in write-protected tables. Each gate validates the source,
installs target key rights, switches to a private stack, then
jumps to the vetted entry, providing P1, P2, and P4 but not
P3, PS5, or P6. IskiOS [25] repurposes Intel PKU within the
kernel (PKK) to support execute-only code and protected
shadow stacks. The design primarily hardens intra-driver
control flow through shadow stacks (P5) and can protect
selected regions from writes (partial P1 for those regions),
but does not define compartment boundaries or validate
interface data (P2, P3, P4, P6 not enforced).



Summary In summary, nearly all driver isolation projects
enforce kernel data integrity (P1) and interface control flow
integrity (P4), which are fundamental for preventing driver
faults from corrupting kernel data or hijacking kernel control
flow. Frameworks addressing exploitable drivers typically
also consider kernel data confidentiality (P2). However,
interface data integrity (P3) is seldom fully enforced due to
the complexity of inferring data invariants for validation at
domain crossings, with only a few projects [§]], [45] offering
partial solutions. Driver control flow integrity (P5) is mainly
considered by SFI techniques to ensure their instrumentation
cannot be bypassed. Finally, driver memory safety (P6) can
be achieved through language-based approaches, such as
rewriting drivers in safe languages.

4. Compartment Interface Vulnerabilities

Driver isolation confines potentially buggy drivers’ memory
accesses. However, a compromised or malicious driver can
still attack the kernel by misusing the kernel/driver interface.
Such attacks are termed Compartment Interface Vulnerabili-
ties (CIVs) [14], [38] and are specific to compartmentalized
applications assuming a malicious compartment.

Researchers have long recognized potential attacks on
the kernel/driver interface in compartmentalized systems.
For instance, early microkernels like MINIX 3 showed that
buggy isolated modules could violate IPC protocols, causing
issues like deadlocks [28[]. LXFI [45] used capabilities for
interface function argument integrity, and Butt et al. [§]
aimed to infer and enforce data invariants against corrupted
driver data. Despite this, most current driver isolation frame-
works do not address CIVs. As shown in Section [2.5]
security properties P3 and P5, which cover interface and
shared data misuse, are not widely enforced. This section
categorizes CIVs into: (1) shared data, (2) concurrency, and
(3) control transfer, based on an examination of prior work,
notably RLBox [50] and Conffuzz [38]].

4.1. CIV Taxonomy

The taxonomy we consider is presented in Table [3] It is
based on previous work [14], [38]], [SO0], with an extension
of five new CIVs, highlighted in bold text. We also provide
citations for the CIVs that have been studied by previous
work. To avoid redundant discussion, we provide code ex-
amples only for the new CIVs. In addition, we note that
while we have made our best effort to summarize and extend
the existing taxonomy, we do not claim that this list covers
all possible CIVs. As research in this area progresses, future
work may discover and add newer CIVs to the taxonomy.
Next, we discuss each category and the new CIVs in detail.

4.2. Shared data CIVs

As discussed in Section [2.4] shared data refers to the
data that can be accessed by both the driver and the kernel
after isolation. These include arguments, return values of
interface functions, and global variables.

Category CIv SubCat.  Detailed Instances

Leaking non-pointer values [14], [38

Leakage Leaking pointer values [38

Corrupted pointer value [14], [38
Corrupted pointer offset or buffer index [38]
Memory  Corrupted union type selectors
Safety Parameters used in kernel memory API [14
Corrupted string [38]

SHARED
DATA

Corruption

Corrupted guard (data attack) [38]
Return wrong/invalid error code |57
Corrupted loop condition

Decision
Making

Arithmetic Divided by zero [44]
Error Integer overflow/underflow (44

Corrupted synchronization primitive |38]
Callback state exchange [50]
Shared memory TOCTTOU [38], |50]

Race

CONCURRENCY .
Condition

Interface Corrupted function pointer invoked by driver [38

CONTROL Bypass Corrupted function pointer invoked by kernel |38

TRANSFER

Interface Sleep in an atomic context
Temporal Lock and never unlock
Violation Unbal d allocation/deall

TABLE 3: CIV Taxonomy. The first column presents the high-level
categories; the second presents the main CIV categories; the third further
classifies the CIVs into more specific subcategories; the fourth column lists
specific types of vulnerabilities that fall under a subcategory, along with
references to relevant literature.

4.2.1. Shared data leakage

Shared data leakage CIVs expose kernel confidential
information to isolated drivers. This leakage commonly
manifests in two primary forms. Firstly, Data Oversharing
occurs due to a lack of fine-grained access control over
large, complex aggregate type objects. For instance, an entire
structure might be shared when the receiving domain only
requires a subset of its fields. Secondly, Uninitialized Data
can lead to leakage when kernel-allocated shared objects
are not fully initialized, which may expose sensitive data
to the driver compartment during synchronization. This can
happen either through incomplete initialization or compiler-
added padding bytes for alignment [38]], [43]].

Leaked data can be of two types: (1) a pointer type,
where leaked pointer values can expose address layout infor-
mation, allowing the subversion of memory layout random-
ization techniques; and (2) a non-pointer type, which may
contain sensitive kernel information, such as cryptographic
keys, authentication tokens, or user data.

4.2.2. Shared data corruption

Shared data corrupted by malicious drivers can affect
kernel operations when used in critical tasks such as memory
API calls [14]]. Conffuzz’s CIV taxonomy classifies shared
data corruption based on data type, e.g., corrupted pointers,
indices, and objects like strings. However, this classification
does not fully convey the end kernel uses of the corrupted
data. We classify shared data corruption CIVs based on
the kernel operations that use corrupted data, categorizing
them as: (1) memory safety violations, (2) decision making
violations, and (3) arithmetic errors.

Memory safety Memory safety CIVs occur when the ker-
nel uses driver-corrupted data in memory operations. For
example, a corrupted shared pointer or offset can cause
corrupted kernel memory [14]], enabling advanced attacks
like DUI [30]], which achieve the equivalent of controlling



union acpi_object {
acpi_object_type type;
struct {acpi_object_type type; u64 value;} integer;
struct {acpi_object_type type; .3 u8+ pointer}

B =

— buffer;

5 struct {..., union acpi_object xelements;} package;
6 faa
[
s acpi_status acpi_extract_package(union acpi_object

— +package, ...) {
9 -
10 for (i = 0; ;i) {
1 union acpi_object

— +element=&(package->package.elements[i]);

12 switch (element->type) {
13 case ACPI_TYPE_BUFFER:
14 -
15 }
16 }
17}

Listing 1: Example of corrupted union type selector.

kernel read/write primitives.

Decision making Attackers can manipulate kernel control
flow by corrupting data used in execution decisions, steering
execution to paths containing sensitive operations.

Arithmetic error Arithmetic operations on corrupted data
can lead to kernel faults. For example, a malicious driver
supplying a zero divisor can trigger a divide-by-zero excep-
tion and subsequent kernel panic. Integer overflow or under-
flow can generate unexpected values, potentially bypassing
security checks or causing API misuse when propagated.

New shared data corruption instances We identified two
new shared data corruption CIVs: (1) corrupted type selec-
tors in unions, and (2) corrupted loop condition.
Corrupted union type selector The kernel often uses
tagged unions for polymorphism, determining data structure
types via a tag or context. In a type confusion attack,
the kernel is tricked into misinterpreting a data structure.
For example, the acpi_power_meter driver’s acpi_object
union (Listing I) can be exploited. If a malicious driver
corrupts an extracted element’s type field (line 12) after
acpi_extract_package is called, it can cause a misinter-
pretation of the memory layout. For instance, an integer
struct could be treated as a buffer struct. By crafting the
integer struct’s value field with a chosen address and then
corrupting type field to ACPI_TYPE_BUFFER, attackers may
trick kernel into arbitrary read/write operations via the value
field, now misinterpreted as the buffer’s pointer field.
Corrupted loop condition Altering loop conditions can
lead to various vulnerabilities. A simple case is a Denial-of-
Service (DoS) attack, where forcing excessive loop iterations
degrades kernel performance or causes unresponsiveness. A
more severe vulnerability arises if an attacker manipulates a
loop termination condition that also controls buffer indexing,
potentially leading to a buffer overflow. For example, in
the mgag2000 driver, corrupting the n_layers field, which
dictates loop iterations and access to the mci->layers array,
could cause a buffer overflow, as detailed in

1 void edac_mc_handle_error(..., struct mem_ctl_info

— *xmci, ...) {
2 for (i = 0; 1 < mci->n_layers; i++) {
3 if (pos[i] >= (int)mci->layers[i].size)
- {...}
4 }
5 e
6 }

Listing 2: Example buffer overflow with corrupted loop conditions.

4.3. Race conditions

Race conditions involve concurrent accesses to shared
data. We consider three types of concurrency CIVs.

TOCTTOU Time-of-Check-to-Time-of-Use vulnerabilities
(TOCTTOU) can occur when an isolated driver modifies
shared data between a kernel’s check and use. This creates
a window for the driver to manipulate the checked value
post-validation. To address the TOCTTOU issue, the check
and the use of the check must be atomic. For example,
RLBox [50] provides a mechanism for making a copy when
a compartment receives data and ensures that all checks and
uses are performed on the copied data.

Shared Lock Corruption An isolated driver with the ability
to modify shared lock values can compromise atomic re-
gions dependent on these locks. This represents a specialized
form of shared data corruption [38§].

Callback State Exchange RLBox [50] identifies a multi-
threading attack where a malicious compartment provides
corrupted object instances to multiple threads in the trusted
compartment. For example, a compromised driver could
supply identical device objects to different threads handling
distinct devices, leading to unexpected race conditions in
kernel API invocations.

4.4. Control transfer CIVs

Control flow transfer CIVs fall into two categories: (1)
interface bypass and (2) interface temporal violations.

4.4.1. Interface bypass

Driver isolation frameworks restrict the driver and kernel
to interact through a set of predefined interfaces. In the
kernel-driver context, interface functions are accessed via
function pointers. If an isolated driver can corrupt these
function pointers, it may either use a corrupted function
pointer to invoke arbitrary kernel functions or trick the
kernel into jumping to arbitrary code locations when in-
voking driver callbacks through these pointers. However,
if P4 (interface control flow integrity) is enforced, these
attacks would be prevented even with corrupted function
pointers. We discuss this assumption further in Section [5.6]
when addressing control transfer CIV quantification.

4.4.2. Interface temporal violation

An interface temporal violation is normally caused by
calling interface functions in the wrong order. That is,
although a driver may invoke only allowed kernel interface
functions, doing so in the wrong order is possible without



further defenses. While there are many kinds of violations,
we discuss three such CIV types in this study: (1) Sleep
in atomic context, (2) Lock and never unlock, and (3)
Unbalanced allocation/deallocation.

Sleep in atomic contexts (SAC) This is a CIV type specific
to the kernel context [5]]. Atomic contexts, such as spinlock-
protected regions or interrupt handlers, require the driver
to complete its operations promptly and without blocking.
However, if a driver invokes a sleepable kernel interface
while holding a spinlock, such as calling kernel memory
allocation functions (e.g., kmalloc()) without passing the
GFP_ATOMIC flag, the system can deadlock or crash. Such
vulnerabilities can be detected using static analysis [5]].

Lock and never unlock A malicious driver can hold shared
locks required by other kernel threads for making progress,
causing system-wide hangs or denial-of-service attacks.

Unbalanced allocation/deallocation Drivers are responsi-
ble for correctly manage object lifetime via kernel memory
management APIs, e.g., kmalloc/kfree. A malicious driver
can intentionally create memory leaks by bypassing calls to
"free" on allocated objects. This can potentially lead to DoS
attacks by depleting system memory. We show an instance
of this CIV in Appendix [C| (Listing [3).

5. Evaluating Driver Isolation Effectiveness

Our discussion thus far has covered existing driver isolation
techniques and the classes of CIVs that can compromise
driver isolation security. However, several key questions
remain unanswered: (1). Which CIVs remain possible under
driver isolation?; (2). How prevalent are these CIVs? and
(3). How certain security properties can be leveraged to
mitigate CIVs? To answer these questions, we perform our
evaluation under different threat models. At a high level, we
first begin with a baseline isolation model common to most
driver isolation frameworks to answer Q1 and Q2. Then, we
explore how extra properties such as P3, P5 and P6, can be
applied to reduce the number of CIVs.

5.1. Threat models

We define a baseline threat model for an isolated driver
framework that enforces the following security properties:
(1) P1: kernel data integrity, (2) P2: kernel data confiden-
tiality, and (3) P4: interface control flow integrity. We also
assume selective sharing of data, where only necessary fields
in objects are synchronized. This partially enforces P3 by
avoiding synchronizing unnecessary data; however, we do
not assume a defense that infers and validates invariants
of interface data, which is an open problem. This driver
isolation model captures the majority of driver isolation
frameworks that aim to confine a buggy driver by controlling
data sharing. We consider that an exploitable driver contains
bugs that allow an attacker to execute arbitrary code within
the driver. Consequently, all driver private data and shared
data can be read and modified by the driver, the control
flow within the driver can be hijacked, and arbitrary code

can be executed, enabling the attacker to jump to any driver
location and invoke any kernel interface function.

To investigate how CIVs may be mitigated by additional
security properties, we compare numbers of CIVs in the
baseline model with the numbers when a security property is
additionally enforced. This approach allows us to understand
the effect of enforcing a security property on CIVs.

5.2. Methodology of quantifying CIVs

In this section, we present our methodology for quan-
tifying CIVs at the kernel-driver isolation boundary. We
summarize the CIV classes, and the corresponding metrics
in Our quantification methodology relies on static
analysis, which identifies CIVs that can potentially be ex-
ploited given our threat model. Since static analysis may
produce false positives, we present how we validate our
results using manual analysis and proof of vulnerabilities
in Section [6.1] We next explain the detailed method for
quantifying each CIV class.

Category CIV Class Metrics (Counts)

Data leakage Total fields - Shared fields

Shared data

Data corruption Taint paths

Concurrency ~ Race Corruptible shared locks

Sleep in atomic context  (spinlock, sleepable func) pairs

Ctrl transfer

Lock never unlock Lock/unlock pairs on shared locks

Unbalanced allocation Allocation/deallocation pairs

TABLE 4: CIV classes and their metrics.

5.3. Quantifying shared data leakage CIVs

As described in Section [£.2.1] kernel sensitive informa-
tion can be leaked due to overshared or uninitialized data.
For our evaluation, we focus on measuring the degree of
overshared data and omit the quantification of uninitialized
data for two reasons: (1) it is hard to determine uninitialized
data due to compiler padding and (2) in certain object-
copying based techniques, access is granted to only the
private object copy in the driver and thus the driver can-
not access uninitialized data in the kernel’s copy to learn
confidential data.

To measure the degree of oversharing, we utilize the
shared field analysis in KSplit [33] to identify those struct
fields whose states are required for correct execution. This
analysis is built on top of the algorithm used by Micro-
drivers [21]], and further improves precision by determining
shared fields. Our algorithm takes all structure-typed inter-
face function parameters, return values, and shared global
variables as input, and computes the following metrics: (1)
the total number of structure fields if deep copy is used,
(2) the number of accessed structure fields, and (3) the
number of shared and accessed structure fields (via shared
field analysis). The difference between the field numbers
computed by (1) and (3) captures the degree of oversharing.



5.4. Quantifying shared data corruption CIVs

Our quantification involves two steps: taint analysis to
identify paths from interface data (sources) to kernel oper-
ations (sinks), followed by pruning to focus on controllable
paths. This extends CIVScope [14] to a more complete CIV
classification while addressing the taint path explosion.

Taint analysis Algorithm [I] (Appendix [A) presents the
taint analysis, and Table [7] (Appendix [F) lists the included
source/sink types. The analysis takes all the arguments and
return values of interface functions as well as global vari-
ables as taint sources, and a set of specified kernel operations
as taint sinks. It outputs a set of taint paths from the sources
to the sinks. Our taint analysis propagates taints on a field-
sensitive, path-, and context-insensitive, interprocedural pro-
gram dependence graph (PDG) in LLVM [42]. The PDG
implementation captures the data and control dependencies
among LLVM IR instructions and variables. It utilizes the
SVF alias analysis [61] to capture intraprocedural pointer
aliasing. Interprocedural aliasing, on the other hand, is
captured by interprocedural dependence edges in the PDG.
Although the PDG lacks path and context sensitivity, it
allows us to identify all potential risky operations that could
operate on tainted data.

Finding likely attackable paths with pruning A taint
trace produced by our analysis indicates a potentially risky
operation that can be affected by values controlled by the
attacker. However, the risky operation may be protected by
various checks; consequently, whether the risky operation
is exploitable depends on whether the attacker can bypass
those checks. Thus, to identify paths that are likely to be
exploited, we employ the following two heuristics: (1). there
is no check in the taint trace, or (2). there are checks in
the taint trace, but none of them directly checks the data
used in the sink. The first heuristic identifies those taint
traces that are easily exploitable by the attacker, because the
attacker can reach the sink without going through any check.
The second heuristic identifies those traces whose sinks
are guarded by some checks but those checks may not be
effective as they do not directly check data used by the sinks.
If a taint trace meets one of these heuristics, we preserve
the trace. However, these heuristics may produce both false
positives and false negatives. We provide evaluation of these
heuristics in the evaluation section (Section [6).

5.5. Quantifying concurrency CIVs

We focus on quantifying corrupted shared locks, a spe-
cific type of concurrency-related CIV. To identify shared
data susceptible to this type of CIV, we extend KSplit’s
shared data analysis [[33|]. This is a field-sensitive analysis
that computes shared data based on the accesses in both
domains. And then, we identify data that are used within
lock APIs, to obtain the shared lock instances.

5.6. Quantifying Control Transfer CIVs

We focus on quantifying a specific category of control
transfer CIVs: interface temporal violations. The other

category, interface bypass via function pointer corruption,
is considered infeasible in our threat model, which assumes
the enforcement of P4 (interface control flow integrity) and
trusts that drivers only use predefined kernel interfaces.

Statically detecting all interface temporal violations is
challenging. Driver protocols can be complex, often involv-
ing device-specific signals beyond the kernel-driver inter-
face, and formal state-machine descriptions [2], [57], [58]
are not commonly used in practice. Since our static analysis
is limited to the kernel-driver interface, fully capturing all
protocol violations is difficult. Therefore, we limit our
scope to quantifying three specific types of interface tem-
poral violations: Sleep in Atomic Context (SAC), holding
shared locks indefinitely (Lock and Never Unlock), and
Unbalanced Allocation/Deallocation.

SAC Violations A driver can trigger an SAC violation by
calling a sleepable kernel function while holding a spinlock,
violating kernel synchronization rules. We quantify potential
SAC instances by identifying drivers that can invoke both a
spinlock-acquiring interface function and a sleepable inter-
face function. We identify sleepable functions using DSAC
[S]. Each unique pair of such callable functions within a
driver is counted as one potential SAC CIV instance.

Lock and Never Unlock A malicious driver could indef-
initely hold a shared kernel lock by acquiring it through
an interface function but failing to call the corresponding
unlock function. Holding private driver locks is considered
only a driver-level Denial-of-Service and is excluded. To
quantify this, we first identify shared locks (as described
in Section [5.5). We then identify pairs of lock/unlock API
functions within the driver’s interface that operate on these
shared locks. Each pair represents a potential CIV instance.

Unbalanced Allocation/Deallocation Drivers might cause
memory leaks or use-after-free errors by invoking sequences
of interface functions leading to unbalanced calls to ker-
nel allocation and deallocation APIs for the same object.
Precisely tracking individual objects across interface calls
typically requires complex alias analysis [40], which is
challenging to scale to the entire kernel. To balance accuracy
and scalability, we employ a type-based approach for
quantification. This approach involves first identifying all
interface functions that can invoke kernel memory allocation
or deallocation APIs. Then, for potential pairs of allocation
and deallocation API calls reachable via the interface, we
check if they operate on objects of the same data type.
This check includes resolving types for void= pointers by
tracking type casting operations. Each identified alloc/deal-
loc pair operating on the same type constitutes a potential
CIV instance.

6. Quantifying CIV Attack Surface

In this section, we present our classification results on CIVs.
Our evaluation goals are as follows:

o Assuming the baseline threat model, how prevalent is
each type of CIV at the driver/kernel isolation boundary



across different driver classes?

« How do the baseline CIV statistics change based on

the enforcement of extra security properties?

For evaluation, we select 11 drivers (Table[3)) from 7 dif-
ferent driver classes. The drivers are selected by referencing
previous studies on driver isolation, e.g., Ksplit [33[]. The
chosen drivers represent major OS subsystems (networking,
storage, USB, graphics), include rich interface boundaries
(bidirectional function pointer exchanges, tagged unions,
linked lists), and span multiple levels of complexity. This
diversity ensures our evaluation captures a representative
spectrum of driver—kernel interaction patterns.

6.1. CIV Statistics for the Baseline Threat Model

Shared data leakage Table [5a| presents the quantification
result of data oversharing. The first row shows the number
of fields directly accessible to the driver, assuming that all
fields are deep-copied to the driver. The second row shows
the number of fields needed for correct execution, computed
based on the parameter access analysis by Microdrivers [21]]
(and Decaf [56]). The third row shows the number of
kernel/driver shared fields, computed using the shared field
analysis by KSplit [33].

Insight 1: Despite the intended isolation between kernel
and drivers, many private kernel fields remain accessible
due to overly permissive data sharing. Deep-copying
entire objects often results in over 99% of shared fields
being unnecessary, and even more selective methods still
expose about twice the needed data. Limiting sharing to
only essential fields can greatly reduce this leakage and
improve kernel data confidentiality.

Shared fields are typically under 1% of deep-copied
fields and about 50% fewer than accessed fields, indi-
cating significant oversharing when unrestricted sharing is
assumed. Even fields accessed (Microdrivers) are roughly
double the shared fields (KSplit). These findings support re-
stricting shared data to mitigate confidentiality-related CIVs.

Shared data corruption Table [Sb| presents the statistics of
shared data integrity CIVs. Statistics for each subcategory
are collected using the taint analysis described in Sec-
tion[5.4] Due to the pruning strategy outlined in Section [5.4]
we organize the statistics in two columns for each driver:
P (Pruned) presents the number of paths after applying the
pruning strategy, while M (Manual) presents the number of
CIVs remaining after manual inspection.

1) Memory Safety: This subcategory shows the highest
diversity of CIVs. MEM1 (pointer value corruption) is
particularly prevalent in ixgbe (48 instances) and nvme
(15 instances). MEM2 (pointer offset/buffer index) also
shows significant occurrences in ixgbe (32 instances).
MEMS3 (type selector) is rare, with only 3 instances in
the power_meter driver. MEM4 (sensitive kernel APIs)
is the most prevalent memory safety CIV, although
less common than in CIVScope [[14] due to the con-
sideration of selective data copying in our experiment.

MEMS (corrupted string) is less common, with only 26
instances in total.

2) Decision-making data: DM1 (corrupted branch guard)
instances are found in every driver, indicating that iso-
lated drivers can still affect kernel control paths. DM2
(invalid/wrong error code) is prevalent, with ixgbe
(1,234 instances) and sfc (1,135 instances) standing
out, and notable occurrences in nvme (53 instances) and
mgag200 (28 instances). Some drivers, like ixgbe, have
too many DM2 instances for manual verification. DM3
(Corrupted loop condition) is relatively less common
compared to other DM classes (85 instances in total),
indicating that many loop conditions within the kernel
can potentially be corrupted and leads to buffer over-
flow when the buffer inside the loop body is accessed.

3) Arithmetic Errors: AE1 (division by zero) is absent
across all investigated drivers, indicating that the ker-
nel rarely uses driver-supplied data as a denominator.
AE2 (integer overflow/underflow) is more prevalent,
with the highest number of vulnerabilities in ixgbe
(28 instances) and nvme (20 instances), suggesting that
arithmetic operations using driver-corrupted data can
have potential overflow/underflow issues.

Our static analyses identifies CIVs, which are potential
vulnerabilities exist at the interface. However, since static
analysis approximates, it cannot confirm that the identified
CIVs can cause actual harm to the kernel. To gain confi-
dence on static analysis results, we performed two types of
validation: manual validation and construction of proof-of-
concept (PoC) exploits for a random sample of cases; these
efforts will be detailed later.

Concurrency As presented in Table[Sc| the ixgbe driver has
the highest instances of corruptible shared lock (3 instances).
This is followed by the null_net and sfc drivers, each with
1 occurrence. But overall, corruptible shared locks are pretty
rare across the studied drivers. This matches KSplit’s result
[33]] that shared locks are rare across device drivers.

Control transfer Table [5d| presents the frequency of inter-
face temporal violation CIVs. SAC vulnerabilities (first row)
are relatively infrequent, with ixgbe, sfc, nvme, mgag200,
and usb_f_fs drivers exhibiting 3 instances each, and
null_blk with 2 instances. Lock and never unlock issues
(second row) are slightly more prevalent, with null_blk
and usb_f_fs having 4 instances each, and ixgbe having
3 instances. Unbalanced allocation/deallocation issues are
prevalent across several drivers, with sfc leading (64 in-
stances), followed by ixgbe (48 instances). The prevalence
of control transfer temporal violations in almost all drivers
underscores the importance of specialized detection and
dedicated prevention, especially given that we tested only
a small subset of such temporal violation issues.

Insight 2: We observed far fewer CIVs than prior
work [14]], thanks to pruning strategies and focusing
on shared data. This suggests that securing interfaces
is feasible without major redesign.



[ ixgbe | null_net | sfc

[ msr | null_blk | nvme [ sb_edac | mgag200 | usb_f fs [ power_meter | dm-zero

Deep copy 999K 48K 846K | 24K 227K 321K 15K 467K 92K 20K 11K
Microdrivers field access [21] 4K 231 6K 66 562 643 91 597 641 144 29
KSplit shared field [33] 1983 73 1K 13 247 249 31 333 173 29 46
(a) Quantify overshared struct fields (data leakage CIVs).
CIV Classes | ixgbe [ null_net | sfc [ msr [ nullblk [ nvme [ sb_edac [ mgag200 | usb_f fs [ power_meter [ dm_zero
MEMORY SAFETY (MEM1) P M P M P M P M P M P M P M P M P M P M P M
MEMI1: Pointer value 48 48 2 1 0 0 0 0 1 1 15 15 2 1 5 3 12 3 0 0 1 1
MEM?2: Pointer offset/buffer index 32 24 2 0 0 0 8 1 0 0 10 10 0 0 9 4 9 0 2 2 0 0
MEM3: Type selector 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0
MEM4: Sensitive kernel memory APIs 77 70 5 3 3 3 13 9 2 2 10 10 6 6 26 18 11 9 2 2 2 1
MEMS: Corrupted string 5 5 2 2 2 2 2 2 4 3 3 2 2 2 3 3 1 1 2 2 0 0
DECISION-MAKING VARIABLE P M [P M| P M [P | M|P|[M|[P| M [P|[M|[P|[M][P[M][P M P M
DMI: Corrupted guard 104 100 | 45 | 45 73 73 81 | 81 | 20 | 20 | 15 13 66 | 66 | 72 | 70 | 51 | 51 | 37 37 2 2
DM2: Invalid/wrong error code 1234 | N/A | 20 13 1135 | N/A 9 9 13 10 | 53 | N/A 1 1 28 28 24 19 4 4 0 0
DM3: Corrupted loop condition 31 25 1 1 2 2 0 0 0 0 10 10 1219 13 1 7 7 7 7 2 2
ARITHMETIC ERROR P M P M P M P M P M P M P M P M P M P M P M
AEI: Divided by zero 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AE2: Integer overflow/underflow 28 28 2 0 0 0 9 2 0 0 |20 11 0 0 4 2 9 4 0 0 0 0

(b) Quantify shared data corruption CIVs. N/A stands for not verified due to large manual effort.

| ixgbe | null_net [ sfc [ msr [ nullblk [ nvme | sb_edac | mgag200 | usb_f fs | power_meter | dm-zero

No. shared lock [ 3 ] 1 [ T 17 0 ] 0 [ 0 ] 0 [ 0 [ 0 [ 0 [ 0
(¢) Quantify corruptible shared lock (concurrency CIV)
[ ixgbe [ null_net [ sfc | msr | nullblk [ nvme | sb_edac | mgag200 [ usb_f fs [ power_meter | dm-zero
Sleep in an atomic context 3 0 3 0 2 3 0 3 3 0 0
Lock and never unlock 3 1 2 0 4 1 0 1 4 1 0
Unbalanced alloc/dealloc 48 6 64 6 2 47 5 42 14 7 0

(d) Quantify control transfer CIVs.

TABLE 5: CIV quantification results. Table |Sal shows the degree of overshared fields that are not read by the driver; Table shows the number of shared
data integrity CIVs; Table [Sc| shows the number of corruptible shared lock instances; Table @] shows the number of control transfer CIVs.

Manual validation First we conducted a two-phase manual
validation on the identified cases. In the first phase, a student
evaluated each case to determine if it represented a true
positive under our threat model. For each case, the student
provided a concise justification, detailing how corrupted
shared data could lead to potential attacks. The second phase
involved a peer review to confirm the validity of the cases.
Our manual validation reveals that the taint analysis achieves
a high level of accuracy, with a precision of 90% across
the evaluated cases. This demonstrates the effectiveness of
our approach in identifying potential security vulnerabilities.
However, the analysis revealed a small number of false
positives, primarily due to limitations in our path pruning
strategy. Specifically, the second heuristic relies on data flow
analysis to determine whether the data used in taint sinks
are subject to proper checks. The imprecision inherent in
this heuristic accounts for the observed false positives.

Construction of PoC exploits To validate exploitability
of identified CIVs, we randomly sampled diverse instances
across CIV classes and drivers. For each, we created two
programs: K’ (kernel code snippet) and D’ (attack code),
then executed them to verify exploitation potential. For
shared data-related CIVs, we instrumented sink operations to
check if malicious values could control operations (example
in Listing 5] Appendix [E). For control transfer CIVs, we
used class-specific verification: success for SAC and Lock/n-
ever unlock means system hang; for unbalanced malloc/deal-
loc, success means memory consumption approaching sys-
tem capacity (128GB). Table [6] (Appendix [D) shows high
PoC exploit success rates (60-100%) across CIV classes,
indicating most instances identified by our static analysis
are genuine vulnerabilities. Some attacks failed, primarily

11

in shared data corruption cases, due to post-sink validation
guards (a detailed example in Appendix [C).

6.2. Impact of enforcing security properties

We examine how three additional security properties,
namely interface data integrity (P3), control flow integrity
(P5), and memory safety (P6), influence the prevalence of
CIVs. Complete statistics are provided in Appendix [G]

Interface data integrity (P3) Interface data integrity (P3)
can be enforced using data invariants, developed manually or
automatically [8]], [[19]. However, the challenge in invariant
inference, coupled with uncertainties in specifiable invari-
ants, make quantifying P3’s impact on mitigating shared data
corruption CIVs difficult. Consequently, we do not quantify
CIV reduction for P3.

Control flow integrity (P5) Control flow integrity (P5)
restricts driver execution to its control-flow graph (CFG),
preventing arbitrary code execution and limiting attacks to
data corruption within the CFG (e.g., control-flow bend-
ing [9]]). We assess P5’s impact on shared data corruption by
memory-unsafe driver operations, leveraging recent analyses
of memory-safe objects [31]], [32]]. These methods isolate
memory-safe objects, rendering them immune to memory
errors and reducing shared data CIVs on such objects
(Table [8). While P5 significantly mitigates control-transfer
CIVs by enforcing CFG adherence, it does not address
interface temporal violations if such paths exist in the CFG.
For instance, existing SAC CIVs within driver code persist
despite P5 enforcement (Table [9).

Memory safety (P6) Memory safety (P6) enforcement in
drivers prevents memory error exploitation for driver mem-
ory corruption, thereby eliminating shared data corruption



CIVs stemming from such errors. This, however, does not
address shared data corruption due to inherent correctness
issues in buggy drivers. P6 also mitigates control-transfer
CIVs, offering stronger protection than P5; thus, any CIVs
P5 mitigates are also addressed by P6.

Results summary Enforcing P5 leads to a 5% to 20%
overall reduction (average 15%) in shared data corruption
CIVs across all classes and drivers (details in Appendix [G]
and Table [§)). The Decision Making (DM) class, especially
DM?2 (Invalid/wrong error code), exhibited the most signif-
icant improvement, with up to 186 and 170 fewer instances
in the ixgbe and sfc drivers, respectively. The Memory
Safety (MEM) class, particularly MEM4 (Sensitive kernel
memory APIs), also saw substantial reductions (e.g., up
to 12 fewer instances in ixgbe). Notably, the ixgbe and
sfc drivers demonstrated the greatest CIV reduction across
multiple vulnerability classes.

Insight 3: Isolation works best after the driver is hard-
ened. Enforcing PS5 or P6, for example through CFI or
a safe language such as Rust, greatly reduces the attack
surface exposed at the isolation boundary.

7. Guidelines for Secure Driver Compartmen-
talization

Our evaluation of 11 representative drivers reveals several
critical patterns and actionable insights for designing secure
driver isolation systems. We distill our quantitative findings
into concrete guidelines for practitioners and researchers.

Guideline 1: Minimize interface data exposure Our
analysis reveals that sharing entire objects across isolation
boundaries exposes over 99% unnecessary fields, while even
access-based sharing approaches [21] expose approximately
twice the data required for correct execution. This overshar-
ing directly undermines kernel data confidentiality/integrity,
as drivers gain access to sensitive fields they never use,
including potential exposure of cryptographic keys, authenti-
cation tokens, or uninitialized memory. Isolation frameworks
should employ fine-grained shared field analysis, such as
KSplit [33]], to identify and synchronize only the minimal
set of fields required for correct execution. Such analysis
should be a baseline security requirement rather than merely
a performance optimization.

Guideline 2: Validate memory operations and data inter-
pretation at isolation boundaries Parameters passed to sen-
sitive kernel APIs represent the most prevalent vulnerability
class, appearing in every driver we studied. These vulnera-
bilities arise when isolated drivers supply corrupted pointers,
buffer indices, or size parameters to memory management
functions (kmalloc, memcpy, DMA operations). Isolation
frameworks should wrap all sensitive kernel APIs with
validation layers that verify pointer bounds, size parameters.
Beyond direct memory operations, type confusion in tagged
unions poses a particularly severe risk by causing the kernel

12

to misinterpret memory layouts. For tagged unions crossing
isolation boundaries, frameworks must validate that type
tags fall within valid ranges, match the expected calling
context, and cannot be modified between validation and use.

Guideline 3: Validate data used in control flow decisions
Corrupted guard variables appear in every driver we eval-
uated, indicating kernel control flow frequently depends on
driver-supplied data. Malicious drivers can exploit this to
steer execution along unintended paths, bypassing security
checks, triggering privileged operations, or accessing unau-
thorized resources. Frameworks should identify security-
critical branch points where execution paths have different
security implications and validate guard conditions using
trusted kernel state. CFI (P5) provides a crucial second layer
of defense, ensuring that even with corrupted guards, the
kernel cannot be redirected to arbitrary code locations.

Guideline 4: Combine isolation with driver hardening
Driver isolation alone leaves substantial attack surface at
the interface boundary. Enforcing driver CFI reduces in-
terface vulnerabilities by approximately 15%, with signif-
icant improvements in decision-making and memory safety
categories. However, CFI does not address temporal vio-
lations CIVs, which remain exploitable within legitimate
control flow paths. The most effective approach combines
multiple defensive layers: CFI to restrict driver execution to
valid control flow paths, comprehensive interface validation
(Guidelines 2 and 3), and temporal integrity enforcement
through resource tracking and protocol state machines. For
new driver development, memory-safe languages such as
Rust eliminate entire classes of memory corruption vulner-
abilities at their source, providing stronger security guaran-
tees than retrofitting runtime checks to C code.

8. Conclusion

We have systemized existing driver isolation frameworks to
understand their enforced security properties. We also inves-
tigated existing taxonomy of CIVs, and estimate their impact
under a baseline threat model. In addition, we explore how
enforcing security properties can mitigate CIVs. We believe
that future development on driver isolation frameworks can
benefit from our findings.

Acknowledgments

This material is based on research sponsored by NSF
CNS-1801534, NSF 2239615, DARPA HR0011-19-C-0106,
AFRL FA8750-25-C-B041 and a grant from MIT Lincoln
Labs. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstand-
ing any copyright notation thereon. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
the U.S. Government.



References

(1]

(2]

(3]

[4]

[3]

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

LKDDb: Linux Kernel Driver DataBase.
Accessed on 04.23.2019.

https://cateee.net/lkddb/.

Sidney Amani, Leonid Ryzhyk, Alastair F Donaldson, Gernot Heiser,
Alexander Legg, and Yanjin Zhu. Static analysis of device drivers:
We can do better!

Arm. Armv8.5-A Memory Tagging Extension. Whitepaper. https:
//developer.arm.com/-/media/ Arm%20Developer%20Community/
PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf.

Ahmed Azab, Kirk Swidowski, Rohan Bhutkar, Jia Ma, Wenbo Shen,
Ruowen Wang, and Peng Ning. Skee: A lightweight secure kernel-
level execution environment for arm. In Proceedings 2016 Network
and Distributed System Security Symposium, San Diego, CA, 2016.
Internet Society.

Jia-Ju Bai, Julia Lawall, and Shi-Min Hu. Effective detection of sleep-
in-atomic-context bugs in the linux kernel. ACM Trans. Comput. Syst.,
36(4), apr 2020.

Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating malicious
device drivers in linux.

Anton Burtsev, Vikram Narayanan, Yongzhe Huang, Kaiming Huang,
Gang Tan, and Trent Jaeger. Evolving operating system kernels
towards secure kernel-driver interfaces. In Proceedings of the 19th
Workshop on Hot Topics in Operating Systems, page 166—173, Prov-
idence RI USA, June 2023. ACM.

Shakeel Butt, Vinod Ganapathy, Michael M. Swift, and Chih-Cheng
Chang. Protecting commodity operating system kernels from vulner-
able device drivers. In 2009 Annual Computer Security Applications
Conference, page 301-310, Honolulu, Hawaii, USA, December 2009.
IEEE.

Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner,
and Thomas R Gross. Control-flow bending: On the effectiveness
of control-flow integrity. In 24th {USENIX} Security Symposium
({USENIX} Security 15), pages 161-176, 2015.

Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.
Fast byte-granularity software fault isolation. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP ’09), pages 45-58, 2009.

Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.
Fast byte-granularity software fault isolation. In ACM SIGOPS
Symposium on Operating Systems Principles (SOSP), pages 45-58,
20009.

Stephen Checkoway and Hovav Shacham. Iago attacks: Why the
system call api is a bad untrusted rpc interface. In Proceedings
of the Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’13,
pages 253-264. Association for Computing Machinery, 2013.

Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zel-
dovich, and M. Frans Kaashoek. Linux kernel vulnerabilities: state-
of-the-art defenses and open problems. In Proceedings of the 2nd
Asia-Pacific Workshop on Systems, pages 1-5, 2011.

Yi Chien, Vlad-Andrei Badoiu, Yudi Yang, Yugian Huo, Kelly
Kaoudis, Hugo Lefeuvre, Pierre Olivier, and Nathan Dautenhahn.
Civscope: Analyzing potential memory corruption bugs in compart-
ment interfaces. In Proceedings of the Ist Workshop on Kernel
Isolation, Safety and Verification, KISV 23, page 33-40, New York,
NY, USA, 2023. Association for Computing Machinery.

Intel Corporation. Intel® 64 and ia-32 architectures software devel-
oper manuals. Landing page for the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manuals.

13

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

John Criswell, Nathan Dautenhahn, and Vikram Adve. Kcofi: Com-
plete control-flow integrity for commodity operating system kernels.
In 2014 IEEE Symposium on Security and Privacy, page 292-307,
San Jose, CA, May 2014. IEEE.

Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and
George Necula. XFI: Software guards for system address spaces. In
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 75-88, 2006.

Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and
George C. Necula. XFI: Software Guards for System Address Spaces.
In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI "06), pages 75-88, 2006.

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCa-
mant, Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The
daikon system for dynamic detection of likely invariants. Science of
Computer Programming, 69(1-3):35—45, December 2007.

Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin,
and Olin Shivers. The Flux OSKit: A Substrate for Kernel and
Language Research. In Proceedings of the Sixteenth ACM Symposium
on Operating Systems Principles (SOSP '97), pages 38-51, 1997.

Vinod Ganapathy, Matthew J Renzelmann, Arini Balakrishnan,
Michael M Swift, and Somesh Jha. The design and implementation
of microdrivers. In ACM SIGARCH Computer Architecture News,
volume 36, pages 168—178, 2008.

Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J
Elphinstone, Volkmar Uhlig, Jonathon E Tidswell, Luke Deller, and
Lars Reuther. The SawMill multiserver approach. In Proceedings
of the 9th workshop on ACM SIGOPS European Workshop: Beyond
the PC: New Challenges for the Operating System, pages 109-114.
ACM, 2000.

Gilbert Neiger, Barry E. Huntley, Ravi L. Sahita, Vedvyas
Shanbhogue, Jason W. Brandt,. Instruction-Set Support for Invocation
of VMM-Configured Services without VMM Intervention, U.S Patent
9804871B2, Oct. 2017.

Amélie Gonzalez, Djob Mvondo, and Yérom-David Bromberg. Take-
aways of implementing a native rust udp tunneling network driver
in the linux kernel. In Proceedings of the 12th Workshop on Pro-
gramming Languages and Operating Systems, page 18-25, Koblenz
Germany, October 2023. ACM.

Spyridoula Gravani, Mohammad Hedayati, John Criswell, and
Michael L Scott. Iskios: Lightweight defense against kernel-level
code-reuse attacks. arXiv preprint arXiv:1903.04654, 2019.

Yinggang Guo, Zicheng Wang, Weiheng Bai, Qingkai Zeng, and
Kangjie Lu. Bulkhead: secure, scalable, and efficient kernel com-
partmentalization with pks. arXiv preprint arXiv:2409.09606, 2024.

Seunghun Han, Seong-Joong Kim, Wook Shin, Byung Joon Kim,
and Jae-Cheol Ryou. Page-Oriented programming: Subverting
Control-Flow integrity of commodity operating system kernels with
Non-Writable code pages. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 199-216, Philadelphia, PA, August
2024. USENIX Association.

Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and An-
drew S. Tanenbaum. Countering ipc threats in multiserver operating
systems (a fundamental requirement for dependability). In 2008 14th
IEEE Pacific Rim International Symposium on Dependable Comput-
ing, page 112-121, December 2008.

Herder, J.N. and Bos, H. and Gras, B. and Homburg, P. and Tanen-
baum, A.S. MINIX 3: A highly reliable, self-repairing operating
system. ACM SIGOPS Operating Systems Review, 40(3):80-89, 2006.

Hong Hu, Zheng Leong Chua, Zhenkai Liang, and Prateek Saxena.
Identifying Arbitrary Memory Access Vulnerabilities in Privilege-
Separated Software, volume 9327 of Lecture Notes in Computer
Science, page 312-331. Springer International Publishing, Cham,
2015.


https://cateee.net/lkddb/
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf

(31]

(33]

[34]

(35]

[36]

[37]

[38

[l

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Kaiming Huang, Yongzhe Huang, Mathias Payer, Zhiyun Qian, Jack
Sampson, Gang Tan, and Trent Jaeger. The taming of the stack:
Isolating stack data from memory errors. In Proceedings 2022
Network and Distributed System Security Symposium, San Diego, CA,
USA, 2022. Internet Society.

Kaiming Huang, Mathias Payer, Zhiyun Qian, Jack Sampson, Gang
Tan, and Trent Jaeger. Top of the heap: Efficient memory error
protection of safe heap objects. In Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’24, page 1330-1344, New York, NY, USA, 2024. Association
for Computing Machinery.

Yongzhe Huang, Vikram Narayanan, David Detweiler, Kaiming
Huang, Gang Tan, Trent Jaeger, and Anton Burtsev. KSplit: Au-
tomating device driver isolation. In /6th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22), pages
613-631, Carlsbad, CA, July 2022. USENIX Association.

Samuel Jero, Nathan Burow, Bryan Ward, Richard Skowyra, Roger
Khazan, Howard Shrobe, and Hamed Okhravi. Tag: Tagged architec-
ture guide. ACM Computing Surveys, 55(6):1-34, July 2023.

Asim Kadav and Michael M Swift. Understanding modern device
drivers. page 12.

P.A. Karger and R.R. Schell. Multics security evaluation: vulnerability
analysis. In 18th Annual Computer Security Applications Conference,
2002. Proceedings., page 127-146, Las Vegas, NV, USA, 2002. IEEE
Comput. Soc.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D.,
Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M.,
and others. sel.4: formal verification of an OS kernel. In SOSP, pages
207-220. ACM, 2009.

Hugo Lefeuvre, Vlad-Andrei Badoiu, Yi Chien, Felipe Huici, Nathan
Dautenhahn, and Pierre Olivier. Assessing the impact of interface
vulnerabilities in compartmentalized software.

Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Gotz. Un-
modified Device Driver Reuse and Improved System Dependability
via Virtual Machines. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design & Implementation - Volume
6 (OSDI '04), pages 17-30, 2004.

Guoren Li, Hang Zhang, Jinmeng Zhou, Wenbo Shen, Yulei Sui, and
Zhiyun Qian. A hybrid alias analysis and its application to global
variable protection in the linux kernel.

Jochen Liedtke, Ulrich Bartling, Uwe Beyer, Dietmar Heinrichs,
Rudolf Ruland, and Gyula Szalay. Two Years of Experience with
a p-Kernel Based OS. ACM SIGOPS Operating Systems Review,
25(2):51-62, April 1991.

Shen Liu, Gang Tan, and Trent Jaeger. PtrSplit: Supporting General
Pointers in Automatic Program Partitioning. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS '17), pages 2359-2371, 2017.

Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. Unisan:
Proactive kernel memory initialization to eliminate data leakages. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, page 920-932, Vienna Austria, October
2016. ACM.

Zheyu Ma, Bodong Zhao, Letu Ren, Zheming Li, Sigi Ma, Xiapu
Luo, and Chao Zhang. Printfuzz: fuzzing Linux drivers via automated
virtual device simulation. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, page
404-416. ACM, July 2022.

Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zel-
dovich, and M. Frans Kaashoek. Software Fault Isolation with API
Integrity and Multi-Principal Modules. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP '11), pages
115-128, 2011.

Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zel-
dovich, and M. Frans Kaashoek. Software fault isolation with API
integrity and multi-principal modules. In SOSP, pages 115-128, 2011.

14

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Derrick McKee, Yianni Giannaris, Carolina Ortega Perez, Howard
Shrobe, Mathias Payer, Hamed Okhravi, and Nathan Burow. Pre-
venting kernel hacks with hakc. In Proceedings 2022 Network and
Distributed System Security Symposium. NDSS, volume 22, pages 1—
17, 2022.

Derrick McKee, Yianni Giannaris, Carolina Ortega Perez, Howard
Shrobe, Mathias Payer, Hamed Okhravi, and Nathan Burow. Pre-
venting Kernel Hacks with HAKC. In Proceedings 2022 Network
and Distributed System Security Symposium. NDSS, volume 22, pages
1-17, 2022.

Aravind Menon, Simon Schubert, and Willy Zwaenepoel. Twin-
drivers: semi-automatic derivation of fast and safe hypervisor network
drivers from guest os drivers. ACM SIGARCH Computer Architecture
News, 37(1):301-312, March 2009.

Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd,
Sorin Lerner, Hovav Shacham, Deian Stefan, and Eric Rahm.
Retrofitting fine grain isolation in the firefox renderer.

Shravan Narayan, Tal Garfinkel, Evan Johnson, Zachary Yedidia,
Yingchen Wang, Andrew Brown, Anjo Vahldiek-Oberwagner,
Michael LeMay, Wenyong Huang, Xin Wang, et al. Segue &
colorguard: Optimizing sfi performance and scalability on modern
architectures. In Proceedings of the 30th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, Volume 1, pages 987-1002, 2025.

Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen,
Sarah Spall, Scott Bauer, Michael Quigley, Aftab Hussain, Abdullah
Younis, Junjie Shen, Moinak Bhattacharyya, and Anton Burtsev.
LXDs : Towards Isolation of Kernel Subsystems. In 2019 USENIX
Annual Technical Conference (USENIX ATC ’19), 2019.

Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,
Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. Redleaf: Isolation
and communication in a safe operating system. In /4th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’20), pages 21-39, 2020.

Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger, and
Anton Burtsev. Lightweight Kernel Isolation with Virtualization and
VM Functions. In Proceedings of the 16th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE
'20), pages 157-171, 2020.

Ruslan Nikolaev and Godmar Back. VirtuOS: An operating system
with kernel virtualization. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP ’13), pages 116-132,
2013.

Matthew J Renzelmann and Michael M Swift. Decaf: Moving Device
Drivers to a Modern Language. In 2009 USENIX Annual Technical
Conference (USENIX ATC °09), 2009.

Leonid Ryzhyk, Peter Chubb, Thor Kuz, and Gernot Heiser. Dingo:
Taming Device Drivers. In Proceedings of the 4th ACM European
Conference on Computer Systems (EuroSys '09), pages 275-288,
2009.

Leonid Ryzhyk, Thor Kuz, and Gernot Heiser. Formalising device
driver interfaces. In Proceedings of the 4th workshop on Programming
languages and operating systems, page 1-5, Stevenson Washington,
October 2007. ACM.

J.H. Saltzer and M.D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278-1308, 1975.

Jiwon Seo, Junseung You, Yungi Cho, Yeongpil Cho, Donghyun
Kwon, and Yunheung Paek. Sfitag: Efficient software fault isolation
with memory tagging for arm kernel extensions. In Proceedings of the
ACM Asia Conference on Computer and Communications Security,
page 469480, Melbourne VIC Australia, July 2023. ACM.

Yulei Sui and Jingling Xue. SVF: Interprocedural Static Value-
Flow Analysis in LLVM. In Proceedings of the 25th International
Conference on Compiler Construction, pages 265-266, 2016.



[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Yifeng Sun and Tzi-cker Chiueh. Side: Isolated and efficient exe-
cution of unmodified device drivers. In 2013 43rd Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks
(DSN), pages 1-12. IEEE, 2013.

Michael M. Swift, Steven Martin, Henry M. Levy, and Susan J.
Eggers. Nooks: An Architecture for Reliable Device Drivers. In Pro-
ceedings of the 10th Workshop on ACM SIGOPS European Workshop,
EW 10, pages 102-107, New York, NY, USA, 2002. Association for
Computing Machinery.

Gang Tan. Principles and implementation techniques of software-
based fault isolation. Foundations and Trends in Privacy and Security,
1(3):137-198, 2017.

R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient software-
based fault isolation. In ACM SIGOPS Symposium on Operating
Systems Principles (SOSP), pages 203-216, New York, 1993. ACM
Press.

Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Giin Sirer,
and Fred B. Schneider. Device Driver Safety Through a Reference
Validation Mechanism. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation (OSDI "08), pages
241-254, 2008.

Huamao Wu, Yuan Chen, Yajin Zhou, Yifei Wang, and Lubo Zhang.
Driverjar: Lightweight device driver isolation for arm. In 2023 60th
ACM/IEEE Design Automation Conference (DAC), page 1-6, San
Francisco, CA, USA, July 2023. IEEE.

Xi Xiong, Donghai Tian, and Peng Liu. Practical protection of kernel
integrity for commodity os from untrusted extensions.

Zachary Yedidia. Lightweight fault isolation: Practical, efficient,
and secure software sandboxing. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages 649-665, 2024.

Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob
Ennals, Matthew Harren, George Necula, and Eric Brewer. Safedrive:
safe and recoverable extensions using language-based techniques. In
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 45-60, Berkeley, CA, USA, 2006. USENIX
Association.

15

Appendix

1. Taint analysis algorithm

Input: Taint sources S; PDG G
Output: Taint traces from sources to sinks
Function TaintAnalysis:
T = risky kernel operations (Table [7);
Tr={}
foreach s € S do
Propagate taint from s along
data-dependency edges of G;
if node n becomes tainted and n € T then
| Tr < TrU {trace from s to n};
end
end
return T7r

Algorithm 1: Taint Analysis

2. Unbalanced allocation and free example

1 int bond_create(struct net *net, const char xname)
2 A

3 struct net_device *bond_dev;

4 struct bonding *bond;

5 int res = -ENOMEM;

rtnl_lock();

7 bond_dev = alloc_netdev_mq(sizeof(struct
— bonding), ...);

8 if (!bond_dev)

9 goto out;

10 bond = netdev_priv(bond_dev);

11 dev_net_set(bond_dev, net);

12 bond_dev->rtnl_link_ops = &bond_link_ops;

13 res = register_netdevice(bond_dev);

14 if (res < 0) {

15 free_netdev(bond_dev);

16 goto out;

17

18 e

19 out:

20 rtnl_unlock();

21 return res;

2}

Listing 3: Vulnerable Linux ethernet bonding driver with unbalanced
memory allocation.

Listing [3] shows part of the code of the Linux eth-
ernet bonding driver. In the bond_create function, mem-
ory is allocated for the bonding network device using
alloc_netdev_mq (Line 7). If the registration is not success-
ful, the allocated object is freed and in the error-handling
path. However, a malicious driver, with the ability to execute
arbitrary code, can deliberately skip the error handling,
causing the unregistered object to persist in memory. This



results in a memory leak, as the allocated memory for the 1 void __bitmap_clear(unsigned long *map, unsigned int
network device remains occupied but unreachable. Over <  start, int len) {

. X s . 2 // Vulnerable pointer arithmetic
time, repeated allocation by the malicious driver can ac- 3 unsigned long *p = map + BIT_WORD(start);
cumulate significant amounts of leaked memory, potentially 4 const unsigned int size = start + len;
. 5 int bits_to_clear = BITS_PER_LONG - (start %
exhaustlng system resources. <, BITS_PER_LONG);
6 unsigned long mask_to_clear =
. . — BITMAP_FIRST_WORD_MASK(start);
3. Failed shared data corruption example . while (len - bits_go_degr(ifg)){
8 // Crash with illegal p or a malicious write
9 *p &= ~mask_to_clear;
. . . . ) 10 len -= bits_to_clear;
1 static void xkmalloc_reserve(unsigned int xsize, " bits_to_clear = BITS_PER_LONG;
= gfp-t flags, ...) { 1 mask_to_clear = ~OUL; p++;
; size_t obj_size = SKB_HEAD_ALIGN(+size); SR
4 obj = kmalloc_node_track_caller(obj_size, flags, 15 // manually constructed maliious “driver" code
o) 16 int main() {
s if (obj || !(gfp_pfmemalloc_allowed(flags))) 17 unsigned long bitmap[2] = {OxFFFFFFFF, OxFFFFFFFF};
6 goto out; 18 // Large value to corrupt pointer calculation
7 19 unsigned int large start = Ox7FFFFFFF;
8 out: 20 // Crash due to invalid pointer arithmetic
9 21 __bitmap_clear(bitmap, large_start, 1);
o} 2 return 0;
23}

Listing 4: Example of check comes after potentially corrupted sink for
shared data corruption. Listing 5: An example PoC exploit.

During the manual verification process, we discovered
instances where guards are implemented after the sink to
validate the correctness of sink operations, as illustrated in
Listing @‘ In the example, both the obj_size and ,ﬂags pa- TABLE 7: Shared data CIV classification. Src: data type passed to interface
rameters to the kmalloc_node_track_caller function could functions as taint source. Propagation: control/data dependency. Sink: taint
be corrupted by the driver. However, after the callsite, the analysis sink.
allocated object and flags are both checked. In these cases,

6. Shared data CIV Classification

we classify such instances as benign and mark them as non- CIV Class  Description Sre Sink
exploitable in our verification process. Prop
Memory Corruption CIVs
4. CIV PoC Analy51s MEM1 Corrupted pointer  Pointer Ptr dereference operations
value Data
MEM2 Corrupted pointer ~ Scalar Buffer access or ptr arith op-
CIV Class Success Rate offset/buffer index ~ Data erations
) Memory Safety (MEM) MEM3 Corrupted union  Tagged Uses of the union data
MEMI: Pointer value ) 9/10 (90%) type selector union
MEM?2: Pointer offset/buffer index 8/10 (80%) Data
MEM3: Type selector 3/3 (100%)
MEM4: Sensitive kernel memory APIs 7/10 (70%) MEM4 Parameters in ker-  All Data  Sensitive kernel APIs
MEMS: Corrupted string 8/10 (80%) nel memory APIs
Decision-making variable (DM) MEM5 Corrupted string String String operations
DMI1: Corrupted guard 10/10 (100%) Data
DM2: Invalid/wrong error code 6/10 (60%)
DM3: Corrupted loop condition 10710 (100%) Data/Control Flow CIVs
Arithmetic error (AE) DMI1 Corrupted guard All Data  Branch instructions
AE1: Divided by zero N/A DM2 Return Driver Branch instructions
AE2: Integer overflow/underflow 6/10 (60%) invalid/wrong return
1 D
Control transfer (CT) error code val Data
CT1: SAC 10/10 (100%) DM3 Corrupted  loop  Scalar Buffer access inside loop
CT2: Lock and never unlock 10/10 (100%) condition Data, body and loop condition
CT3: Unbalanced alloc/free 10/10 (100%) Control

Arithmetic Exception CIVs

TABLE 6: PoC results for CIV classes; n/a for "divided by zero" since no

such cases were identified during static analysis. AEI Divided by zero lsDcalar Divide operations
ata
AE2 Integer Scalar Overflowing arithmetic ops
5. Example PoC EXplOlt over/underflow Data

16



7. Shared data corruption/Control transfer CIV

number after enforcing CFG (P5)

CIV Classes

[ ixgbe | nullnet | sfc | msr [ nullblk | nvme | sb_edac | mgag200 | usb_f fs [ power_meter [ dm_zero

MEMORY SAFETY (MEM1)
MEMI: Pointer value 41 2 0 0 1 13 2 4 10 0 1
MEM?2: Pointer offset/buffer index 27 2 0 7 0 8 0 8 8 2 0
MEM3: Type selector 0 0 0 0 0 0 0 0 0 3 0
MEM4: Sensitive kernel memory APIs 65 4 3 11 2 9 5 22 9 2 2
MEMS: Corrupted string 4 2 2 2 3 3 2 3 1 2 0
DECISION-MAKING VARIABLE
DM1: Corrupted guard 88 38 62 69 17 13 56 61 43 31 2
DM2: Invalid/wrong error code 1048 17 965 8 11 45 1 24 20 3 0
DM3: Corrupted loop condition 26 1 2 0 0 8 10 11 6 6 2
ARITHMETIC ERROR
AE1: Divided by zero 0 0 0 0 0 0 0 0 0 0 0
AE2: Integer overflow/underflow 24 2 0 8 0 17 0 3 8 0 0

TABLE 8: Quantify shared data corruption CIV.

[ ixgbe [ null_net [ sfc [ msr [ null_blk [ nvme | sb_edac | mgag200 [ usb_f fs | power_meter | dm-zero

SAC 0 0 0 0 0 0 0 0 0 0 0
Lock and not unlock 0 0 0 0 0 0 0 0 0 0 0
Unbalanced allocation/deallocation 2 1 2 0 0 0 0 0 0 0 0

TABLE 9: Control transfer CIVs after enforcing CFI (P5).

17



	Introduction
	Driver Isolation Overview
	Sandbox architecture
	Driver threat models
	 Driver isolation boundaries
	Interface data
	Driver isolation security properties

	Driver Isolation Frameworks
	Software-based Fault Isolation (SFI)
	Language-based driver isolation
	User-mode drivers
	Page table switching
	Virtualization
	Memory tagging

	Compartment Interface Vulnerabilities
	CIV Taxonomy
	Shared data CIVs
	Shared data leakage
	Shared data corruption

	Race conditions
	Control transfer CIVs
	Interface bypass
	Interface temporal violation


	Evaluating Driver Isolation Effectiveness
	Threat models
	Methodology of quantifying CIVs
	Quantifying shared data leakage CIVs
	Quantifying shared data corruption CIVs
	Quantifying concurrency CIVs
	Quantifying Control Transfer CIVs

	Quantifying CIV Attack Surface
	CIV Statistics for the Baseline Threat Model
	Impact of enforcing security properties

	Guidelines for Secure Driver Compartmentalization
	Conclusion
	Bibliography
	References
	Appendix
	Taint analysis algorithm
	Unbalanced allocation and free example
	Failed shared data corruption example
	CIV PoC Analysis
	Example PoC Exploit
	Shared data CIV Classification
	Shared data corruption/Control transfer CIV number after enforcing CFG (P5)




