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Abstract

Capability Hardware Enhanced RISC Instructions
(CHERI) is a set of hardware extensions that allow enforce-
ment of spatial and temporal safety for unsafe programming
languages like C. CHERI utilizes an idea of hardware ca-
pability pointers to enforce bounds checks on all memory
accesses and a hardware-assisted revocation scheme to en-
force temporal safety. In theory, CHERI offers a surprising
mix of practical adoption and strong security guarantees
for traditionally unsafe environments like operating system
kernels, i.e., capability extensions block a range of software
safety-related vulnerabilities common to low-level systems
code while requiring only a modest engineering effort.

Our work takes a deep look at the potential impact
of CHERI on the security of commodity operating system
kernels. We analyze a total of 439 kernel vulnerabilities in
Linux and FreeBSD kernels. Our analysis shows that CHERI
can block 35%-61% vulnerabilities depending on whether
temporal safety is enabled in the kernel. Enabling CHERI
requires a modest effort, e.g., porting the FreeBSD kernel to
support pure-capability mode of execution took 7 months.
Finally, we estimate that compared to Rust, CHERI blocks
70% of vulnerabilities (38% if revocation is off), a number
lower than blocked by Rust, 84%, but at a much lower
effort. We hope that our work improves the understanding
of potential effort and benefits of capability protection in
commodity kernels.

1. Introduction

Modern operating systems face hundreds of exploitable
vulnerabilities every year. They are huge, complex code-
bases, e.g., a recent version of the Linux kernel, v6.17, is
over 40 million lines of code. A typical kernel implements
dozens of complex subsystems — memory management,
process address spaces, scheduling, interrupt processing,
network and storage stacks, page and buffer caches, file
systems, etc. — each with intricate logic and cross-subsystem
dependencies: a combination of manual and automated
(reference counted) object lifetimes, numerous correctness
and security invariants, support for dynamic extensions and
generic interfaces, complex hotplug and power management
protocols, intricate synchronization disciplines, and, finally,
numerous optimizations that often trade modularity and code
clarity for performance. Moreover, modern kernels evolve
at a rapid development rate, e.g., the Linux kernel averages
75,000-90,000 commits per year.

In addition to inherent semantic complexity, modern ker-
nels are often developed in unsafe programming languages.
Right now, C remains the dominant language in commer-

cially available kernels like Linux, FreeBSD, MacOS, and
Windows. Unsafe programming languages, combined with
complexity and rapid development results in a steady stream
of errors and vulnerabilities. While the understanding of
which software flaws should be designated as potentially
exploitable vulnerabilities evolved over the years, which
likely resulted in vulnerability undercounting in the past, it
is safe to say that a modern full-featured kernel like Linux
can identify several hundreds of vulnerabilities a year.

To address a growing number of kernel vulnerabilities,
modern kernels deploy a range of state-of-the-art defenses:
address space layout randomization (ASLR) [39], control-
flow integrity [1], automatic stack and heap initializa-
tion [8, 35], data execution prevention [11], non-executable
stack [11], stack canaries [10], allocator hardening [40,
26], and various degrees of sanitization. Nevertheless, the
ever evolving understanding of attack and defenses allows
attackers to bypass the most sophisticated mitigation mech-
anisms [34, 6, 5, 23, 19, 32]. In the last decades, attackers
have significantly improved both the techniques and au-
tomation of turning a chain of seemingly benign errors into
powerful exploits [20].

Facing the need to address a growing number of flaws
and vulnerabilities, modern kernels are becoming increas-
ingly open towards non-traditional approaches that can
change conceptual balance of exploitation in the kernel, for
example, adopting the use of safe programming languages
like Rust [24]. Unfortunately, while a promising direction,
adopting Rust requires significant development effort for
both developers and maintainers [24, 9].

An alternative way of improving the security of the
kernel is to adopt a language-agnostic approach that can
enforce a range of safety properties for existing kernel code.
Capability Hardware Enhanced RISC Instructions (CHERI)
is a set of hardware extensions [46] which can enforce a
subset of spatial and temporal properties in hardware [37].
At a high-level, CHERI replaces traditional memory ref-
erences with hardware capabilities, fat hardware pointers
that store bounds information along with the memory ad-
dress [42]. The hardware transparently enforces bounds
checks on all memory dereferences and implements a range
of mechanisms that protect capabilities from unauthorized
modifications in registers and in memory.

CHERI offers a surprising mix of practicality and se-
curity. A CHERI-aware compiler toolchain supports trans-
parent recompilation of existing C/C++ kernel code. Min-
imal modifications are needed to accommodate low-level
programming idioms that cannot be expressed at the level of
the programming language [44]. At the same time, CHERI
can stop a wide range of low-level vulnerabilities related to



spatial and temporal memory safety through a combination
of bounds checks and revocation schemes [47, 45, 17].

At the moment, we still have a limited understanding
of both the security guarantees provided by the CHERI
architecture and opportunities for attacking capability sys-
tems [43]. Prior analysis focused on the impact of CHERI
on user applications, in which traditional memory safety
dominates the notion of security [41]. We argue, however,
that the complexity of the kernel execution environment
and its pervasive use of unsafe abstractions along with the
need to maintain numerous security, and semantic invari-
ants creates a set of unique security challenges that cannot
be addressed by low-level safety alone. Intuitively, while
CHERI capabilities can prevent a range of low-level vul-
nerabilities, many classes of security attacks such as double
free, resource leaks, protocol violations, race conditions, and
various semantic errors might be exploitable.

Our work takes a careful look at the impact of CHERI
capabilities on the security of the kernel. Specifically, we ask
the following questions: What classes (and what fraction)
of vulnerabilities found in the kernel can be eliminated
by protecting a full-featured operating system kernel with
CHERI capabilities? What effort is needed for porting the
kernel to enable pure capability mode of execution? And
finally, how does hardware-based safety compare to the
programming language safety offered by Rust?

To answer these questions, we study a collection of 439
vulnerabilities from the FreeBSD and Linux kernels. We
develop a new classification taxonomy centered around the
observation that low-level manifestations like out-of-bound
accesses, use-after-free, access to uninitialized memory, etc.,
are results of high-level flaws in the kernel code. In our
analysis we track both the high-level cause and low-level
manifestation for each vulnerability, which allows us to get a
deeper insight into the nature of each flaw and the possibility
to block exploitation at both architectural and programming-
language levels.

Our analysis shows that CHERI can eliminate large
classes of safety-related vulnerabilities, 61%, but only if
we assume that a revocation scheme [47, 45, 17] is imple-
mented in the kernel. CHERI blocks errors that manifest as
safety symptoms, e.g., out-of-bound accesses, use-after-free,
dereferences of invalid pointers, but fails to prevent double
free, uninitialized memory accesses, resource leaks, explicit
exceptions and panics, and other logical and semantic errors.
Note, however, that CHERI blocks the most severe vul-
nerabilities that potentially lead to privilege escalation, i.e.,
typical read and write primitives via out-of-bound accesses
and invalid pointer dereferences.

Temporal safety is critical for eliminating a large fraction
of vulnerabilities. If revocation is not supported (as it is now
in the CheriBSD kernel), the total percentage of vulnerabil-
ities blocked by CHERI drops from 61% to 35%, which, of
course, significantly alters the effectiveness of the CHERI
protection scheme.

Compared to Rust, which can block 84% of kernel
vulnerabilities, with revocation enabled CHERI achieves a
lower fraction of 70% (38% if revocation is off). Note, to

compare against Rust, we analyze the dataset used by Li et
al. [25], which is limited to device driver vulnerabilities.
On this dataset, CHERI mitigates 70% of vulnerabilities
(compared to 61% on the full dataset). Arguably, compared
to Rust, CHERI has a smaller TCB which can potentially
result in stronger security guarantees. In Rust, a flow in the
unsafe code can provide an attacker with a classical write
primitive with access to the entire memory. Hardware capa-
bilities significantly narrow the opportunities for exploitation
through enforcement of fine-grained pointer bounds and
partial control flow integrity.

An engineering effort for enabling pure capability mode
in the core kernel is relatively low. Despite the fact that work
on supporting capabilities in the FreeBSD kernel started
in 2013, enabling the pure capability mode of execution
required only 7 months. Furthermore, the effort of enabling
CHERI in device drivers and other kernel extensions is very
low — often only a couple of lines of code need to be
changed. This is important since device drivers constitute
70% of the kernel code in modern kernels like Linux.
Moreover, since UNIX kernels share conceptual similarity,
one can follow the CheriBSD blueprint for enabling the pure
capability mode of execution.

We hope that our work can improve understanding of
the security guaranees offered by the CHERI capability
architecture as well as accelerate its adoption.

2. Background

2.1. CHERI Architecture

CHERI overview CHERI is a collection of architectural
CPU extensions aimed at providing support for enforcing
spatial and temporal safety in native code compiled from
unsafe programming languages. CHERI introduces the no-
tion of hardware “capabilities” — unforgeable pointers that
hold information about the bounds of each memory region
along with the memory address itself. The CPU is extended
to support a capability register file (e.g., a 129-bit wide
register file on ARM Morello CHERI implementation that
uses 64 bits to store the address, 64 bits to hold the capability
metadata (compressed bounds information, capability type,
etc.), and 1 extra bit to store the tag showing that capa-
bility is valid). All memory accesses then use capabilities
instead of just memory addresses (i.e., regular load and
store instructions as well as load instructions relative to
the program counter which is also a capability register). On
every access, the hardware validates that the access is in-
bounds. The compiler relies on special capability load and
store instructions and the execution environment to enforce
spatial safety. For example, the memory allocator returns
capability pointers that it creates (or mints) by reducing the
bounds of the capability pointers received from the kernel.

An important security property of the CHERI archi-
tecture is that capabilities are “unforgeable” — the only
way to create a valid capability is through the privileged
sctag instruction. Once created, the capability is protected
throughout the system — in registers and in memory. Only
valid operations are allowed on capabilities, and they follow



a set of specific rules. For example, capability bounds can
be made smaller but an attempt to increase the bounds
invalidates the capability (the “monotonicity” rule). This, for
example, allows a user-level memory allocator to convert
a capability of a large memory region returned by the
kernel into smaller capabilities for individual fine-grained
allocations.

To protect capability pointers from modifications, a spe-
cial one-bit tag is stored along with each the capability
in memory. If the capability is then tampered with, e.g.,
by changing its bounds or metadata, the tag is invalidated,
which makes the capability invalid. The tag can be either
stored in the metadata bits maintained by the memory
controller or in a separate memory region [21, 46].

Hybrid and pure modes of execution CHERI supports two
modes of execution: hybrid, and pure. The hybrid mode
allows one to combine legacy and new capability-aware
instructions in a single binary. In the pure mode, all memory
accesses require capability pointers. CHERI relies on com-
piler and run-time extensions to enable development and
execution of the pure capability code. Compiler extensions
allow compilation of unsafe C/C++ code into pure capability
machine code that uses explicit capability instructions for all
memory accesses. The compiler treats all pointer types as
capabilities (i.e., 128 bit-wide in Morello implementation)
and generates capability-aware load and store instructions
that operate on the capability registers for all pointer deref-
erences.

Control-flow integrity CHERI supports a form of control-
flow integrity (CFI) via capability sealing. In CHERI, a
capability can be sealed — meaning that its address and
metadata cannot be changed until used in a corresponding
unsealing operation. By sealing code pointers into “sentry”
(sealed entry) capabilities, CHERI provides code-pointer
integrity (CPI) (a subset of control-flow integrity). Each
function in CHERI has a sentry capability with its value
fixed to the beginning of the function and its bounds cov-
ering the entire function. When calling a function through
a sentry capability, the CPU unseals the capability before
setting the program counter capability — this allows the
function itself to freely execute while ensuring that callers
may only jump to the start of it. Similarly, return addresses
are also sealed as sentries to allow the control flow to be
passed back to the caller in a controlled manner.

Temporal safety A flavor of temporal safety is supported
in CHERI via capability revocation schemes [47, 45, 17,
2]. At a high-level, when an object allocated on the heap is
deallocated, the object enters a quarantine instead of being
released into the allocator’s free pool. Note that valid capa-
bilities to an already freed object can be saved in memory,
loaded in registers of process threads, and be even passed
to the kernel. To invalidate capabilities saved in memory,
CHERI performs an address space scan (i.e., memory of
the process) invalidating capabilities that point into the
quarantined objects [47, 45]. In early revocation schemes
such scan required a stop-the-world freeze of all threads
of the process [47, 45]. Later schemes [2, 17] minimize the

freeze by combining the scan with in-line checks for whether
a capability points to a quarantined region when it is loaded
from memory into a register. The pages that were not yet
scanned are marked read only, and if a capability load is
attempted on them, it triggers a page fault [17]. CHERI still
freezes all threads to inspect their register content and delays
revocation until all system calls involving user capabilities
exit the kernel.

At the moment, CheriBSD kernel does not implement
support for revocation. In the kernel, revocation is challeng-
ing due to the high rate of allocation and deallocation (e.g.,
in the Linux kernel the network subsystem allocates mem-
ory for every network packet), and the high performance
impact of revocation scans and page faults due to checks on
capability loads. It is not yet clear if a practical kernel-level
revocation scheme is possible. Yet in our work, we explore
both scenarios: with and without support for temporal safety.

Note that CHERI does not support revocation for the
objects allocated on the stack, as there is no easy way to
implement the quarantine stage for automatic deallocation
on the stack without significant performance impact. Le.,
a capability to the object on the stack will remain valid
if saved to memory or passed to another thread even after
the function returns and the stack is reused for other pur-
poses. Similarly, CHERI does not implement revocation of
pointers to the objects allocated statically in the data and
BSS sections. Modern kernels support dynamic extensions,
which can be loaded and unloaded at runtime. This allows
an attacker to trigger a use-after-free vulnerability into the
data section of a kernel extension which was unloaded,
e.g., this is similar to CVE-2023-35829 in which the kernel
accesses state of an unloaded Rockchip Video Decoder
driver due to the missing cancel_delayed_work_sync ()
invocation needed to cancel the work handler registered with
the kernel.

3. Methodology

To understand the possible impact of CHERI capabilities
on the kernel, we structure our study around three questions:
Q1. What classes of kernel vulnerabilities can be eliminated
by CHERI? Q2. What effort is required to implement a pure
capability mode in the kernel? Q3. How do capability se-
curity guarantees compare to the security achieved through
programming language safety, i.e., Rust?

To answer Q1, we analyze 439 CVEs from the Linux and
FreeBSD kernels to understand whether CHERI prevents
exploitation. CVEs from the FreeBSD kernel are a natural
candidate, as CheriBSD is the first full-featured kernel that
implements the pure capability model of execution. Unfor-
tunately, the FreeBSD CVE dataset is too small: only 101
vulnerabilities over 11 years. We, therefore, extend it with
338 vulnerabilities from the Linux kernel which provides us
with a much wider range of kernel errors as well as allows us
to compare CHERI with Rust [25]. We pick Linux CVEs as
two groups: First, we randomly selected 100 vulnerabilities
discovered in 2025. This allows us to analyze a broad class
of recent vulnerabilities in the Linux kernel, specifically,
after the Linux kernel became a CVE assigning authority,



which broadened CVE assignment to a much wider class of
kernel flaws. Second, we analyzed 234 Linux vulnerabilities
used by the previous study aimed to understand the impact
of Rust on the security of the Linux kernel [25]. This group
allows us to conduct a head-to-head comparison of the
security impact of CHERI and Rust. We manually analyze
and classify vulnerabilities (each vulnerability is analyzed
by at least two people to ensure confidence in classification).

To answer Q2, we carefully analyze the changes intro-
duced to the FreeBSD kernel from 2013 to 2025 and analyze
the effort required to implement those changes.

To answer Q3, we utilize recent work that analyzed
the potential impact of Rust on device driver vulnerabilities
in the Linux kernel [25]. We take the dataset used by Li
et al. [25] and analyze it to compare whether the same
vulnerabilities will be blocked by CHERI.

4. Taxonomy of Kernel Vulnerabilities

Our taxonomy of kernel vulnerabilities is centered
around the observation that low-level manifestations like
out-of-bound accesses, use-after-free, access to uninitialized
memory, etc., are results of high-level flaws in the kernel
code. For example, logical errors like a mismatch between
allocated and intended object size, incorrect computation of
the array indexes, insufficient user-input validation, etc., can
all manifest as the single symptom like an out-of-bound
access. In our classification we explicitly track both the
cause and manifestation for each vulnerability. This allows
us to get deeper insight into the nature of each flaw and the
possibility to block exploitation with both architectural level
solutions like CHERI and higher-level solutions like Rust,
a safe programming language with a powerful type system
and ergonomic abstractions. A manifestation-centric view
allows us to reason about low-level approaches like CHERI
as intuitively capabilities should be able to block all CVEs
that manifest as low-level safety problems. A cause-centric
view, on the other hand, provides us with a higher-level view
of the reasons that lead to a vulnerability and whether better
programming abstractions like safe programming languages
can prevent it.

4.1. Manifestations

Out-of-bound reads and writes Out-of-bound accesses
manifest as loads and stores beyond the allocated memory
size. Out-of-bound access is one of the most common
manifestations in our dataset (21% of all errors). The root
causes of out-of-bounds accesses range from logical errors
like improper calculation of array and buffer indexes to
calculation of allocation size, and validation of user-passed
arguments. For example, CVE-2024-45288 demonstrates a
buffer overflow where the developer forgets to perform a
null termination check while handling a string. In contrast,
CVE-2025-0373 triggers a buffer overflow due to the wrong
assumption of the struct size on 32-bit vs 64-bits machine
mode.

Out-of-bound accesses allow attackers to perform reads
and writes to system memory, which historically was a
powerful attack primitive leading to information disclosure,

| int exec_copyout_strings (struct image_params *imgp, uintcap_t =
stack_base) {

if (imgp->execpath != NULL && imgp->auxargs != NULL) {

4 execpath_len = strlen(imgp->execpath) + 1;
destp —-= execpath_len;
destp = rounddown2 (destp, sizeof (void  __capability));
imgp->execpathp = (void * __capability)

cheri_setbound ct (destp, path_len);

error = copyout (imgp->execpath, imgp->execpathp,
execpath_len);

10 if (error != 0)

11 return (error);

12 }

13}

R N

Listing 1: An example of capability derivation in CheriBSD

privilege escalation, or kernel panic caused by an unexpected
exception or subsequent denial-of-service.

Cheri » (Yes) In most cases, CHERI can mitigate out-
of-bound accesses since capability protection is enforced at
the architectural level — every memory access is a subject
to the capability bounds check.

Cheri » (No) While CHERI blocks straightforward ex-
ploitation of out-of-bounds accesses, a small exploitation
window remains possible. In some cases, an attacker can
leverage a logical error in the computation of capability
bounds, e.g., by controlling the size argument passed to ca-
pability creating primitives. Such hypothetical logical errors
may occur in places similar to exec_copyout_strings ()
where the bounds of the executable path capability are set
from the length of the specified string (Listing 1).

The CheriBSD allocator implements sufficient alignment
and padding to ensure that heap objects’ size and bounds
can be represented by CHERI capabilities. In some cases,
however, the kernel code allows creation of capabilities with
excessive bounds. For example, the pHYs_To_DMAP () macro
returns a capability to the dmap region (which provides
access to all physical memory) given a physical address. An
even more restrictive variant, PHYS_TO_DMAP_PAGE (), gives
access to the entire page. Logical flaws in the code may
allow attacker to reach these macros and later exploit a larger
capability with an out-of-bound access.

Finally, in some cases, the kernel code manually relaxes
capability bounds to accommodate container and member
idioms (e.g., _ _containerof () in FreeBSD). In such cases,
manual annotations are added to suppress tightening and
hence can provide an opportunity for out-of-bounds ac-
cesses.

Use-after-free and double free Use-after-free (UAF) and
double free happen when the code dereferences or frees
a previously freed pointer. Common causes for use-after-
frees and double free include time-of-check to time-of-use
(TOCTOU), race conditions, missing return value check,
and protocol errors (e.g., implementation of tear down and
de-registration protocol (CVE-2022-34495), forgetting to set
the pointer to NULL after deallocation (CVE-2021-29266),
etc).

Cheri » (Yes) CHERI supports capability revoca-
tion [47, 45, 17, 2]. At the moment, the revocation scheme is
not implemented in the CheriBSD kernel. The main concep-
tual limitation is that revocation scheme requires a system-
wide freeze of all threads and can introduce prohibitive




overhead due to the high frequency of object allocation in
the kernel. If we assume that revocation scheme can be im-
plemented in the kernel, most use-after-free vulnerabilities
will be blocked by CHERI. Note, CHERI does not support
revocation for capabilities to objects allocated on the stack
and in the data sections.

Cheri » (No) CHERI provides no protection against
double-free. To guard against double free, a memory al-
locator has to implement a hardening scheme [40, 26]

Uninitialized memory access Uninitialized memory ac-
cesses occur due to failure to initialize memory properly, i.e.,
zero-out previously freed memory upon allocation from the
free pool, partial or incomplete initialization due to align-
ment and padding gaps between the fields of the data struc-
ture, or logical failure to follow the initialization protocol
before using the data structure. Uninitialized accesses result
in attacks ranging from information disclosure to powerful
write primitives and control flow violations (due to re-use
of previously allocated pointers). Information disclosure is
possible due to both access to stale memory values (e.g.,
CVE-2024-26638) as well as more nuanced padding errors
when compiler fails to initialize the space between naturally
aligned fields (CVE-2016-4482). To maximize performance,
both Linux and FreeBSD memory allocators do not zero-out
memory on the stack and heap upon allocation, which, in
some cases, allows attackers to access these stale values.
Access to stale function pointers can result in control flow
violations. Finally, access to stale capabilities may provide
attacker with powerful read and write primitives.

Cheri » (Yes) If revocation scheme is implemented,
CHERI invalidates stale pointers to data structures allocated
on the heap, hence making it impossible to re-use these
pointers if they are leaked to the attacker due to failure
to zero-out the data structure. Further, CHERI prevents null
pointer dereferences, as zeroed-out null pointer is not a valid
capability (does not have a valid tag).

Cheri » (No) CHERI fails to block information disclo-
sure attacks due to the lack of initialization of previously
used memory or padding. Since revocation schemes are
limited to pointers to the data structures allocated on the
heap, CHERI fails to block re-use of pointers if the stale
pointer is pointing to the data structure allocated on the
stack or in the data section.

Resource leak Memory and other resource leaks happen
when unsafe code violates resource deallocation protocol
leaving resource in an allocated but unused state. A typical
kernel like Linux supports a combination of manual and
reference counted lifetimes. Resource leaks are violations
of lifetime protocols, i.e., developer forgets to decrement
a reference counter or manually free an object. Resource
leaks allow an attacker to exhaust system memory and other
resources and cause a denial of service.

Cheri » (No) CHERI does not prevent resource leaks
as it does not automatically detect or reclaim memory and
other resources that are no longer used.

Invalid pointer dereference Invalid pointer dereference can
lead to an undefined behavior [3]. In the kernel, invalid

| static int brcm_nvram_parse (struct brcm_nvram xpriv)
len = le32_to_cpu(header.len);
data = kzalloc(len, GFP_KERNEL);

4 + if (!data)

5 + return —-ENOMEM;

6 memcpy_fromio (data, priv->base, len);
data[len - 1] = '\0';

Listing 2: Null pointer derefence as a result of a missing return
value check (CVE-2023-3359)

pointer dereferences often result in page faults due to ac-
cessing an unmapped memory access, such as 0x0, the most
common invalid pointer instance, but can also provide access
to sensitive kernel data structures. For example, on some
architectures the 0x0 address is mapped as an exception
vector table, thus dereferencing the null pointer might result
in a vector handler override. Listing 2 shows a classic
instance of a null pointer dereference due to a missing return
value check.

Cheri » (Yes) CHERI blocks invalid pointer derefer-
ences, as invalid pointers are not valid capabilities and
trigger a fault when dereferenced.

Exception or panic A range of high-level logical errors
manifest as low-level exceptions or explicit kernel panics
and kernel assertion macros like BuGg_on (). Both exceptions
and panics are manifestations of an inconsistent kernel state
,from which recovery is impossible (i.e., there is no good
way to recover from reaching a division by zero). While the
kernel can survive some exceptions, in most cases, some
functionality is unrecoverable, which results in a denial of
service.

Cheri » (No) CHERI does not protect against exceptions
due to logical errors in the code.

Failure to release CPU Some vulnerabilities cause the
kernel to monopolize the CPU, leading to system hangs. For
example, CVE-2018-6918 results in an infinite loop in the
FreeBSD’s IPsec option parsing code, which has a logical
flaw and causes the length to be zero in some cases. Since
the length value is used as the loop iterator, the loop never
progresses, and the thread fails to yield the CPU. A similar
issue occurs in Linux, CVE-2023-5158. In CVE-2023-2269,
failure to release the CPU stems from a recursive locking
scheme in the device mapper subsystem: a write lock is
acquired and reentered as a read lock through an indirect
call path, leading to a deadlock that indefinitely stalls the
thread. In CVE-2023-31084, the code invokes interruptible
sleep while holding a semaphore, which may delay lock
release, temporarily monopolizing CPU resources.

Cheri » (No) This class of vulnerabilities arises from
semantic errors in the design or implementation of the code.
Since failure to release the CPU does not violate spatial or
temporal memory safety, CHERI does not mitigate this class
of vulnerabilities.

Control flow violation Control flow violation is a powerful
attack primitive that in many cases can lead to privilege
escalation. Control flow violation occurs when critical ex-
ecution data gets overridden such as return addresses or
function pointers, but also can be a result of a data only
attack that breaks the expected execution protocol, resulting
in early exit, incorrect resource cleanup, deadlocks etc.



static int
epair_clone_create (struct if_clone xifc, char xname, size_t len,
caddr_t params)

{

- if (params) {

6 - scb = (struct epair_softc *)params;

7 ifp = scb->ifp;

8 /* Copy epairNa etheraddr and change the lac byte. */
9 memcpy (eaddr, scb->oifp->if hw_addr, ETHER_ADDR_LEN) ;
10 eaddr[5] = 0x0b;

11 ether_ifat 1(ifp, eaddr);

12 /* Correc t the name for the cloner list. =/

13 - strlcpy(name, ifp->if_xname, len);

14 - return (0);

}
o
Listing 3: Control flow violation(CVE-2020-7452)

Listing 3 shows an example of function pointer corrup-
tion in the FreeBSD epair (virtual ethernet interface pair)
device driver. epair_clone_create is a driver implemen-
tation of the network clone interface that is responsible
for dynamically creating virtual network interfaces. The
implementation casts user provided argument param as a
struct epair_softcx (line 6). The driver then fully trusts
user provided struct epair_softc, including its member
ifp (line 7, 11). Since ifp is a pointer to struct ifnet
that contains function pointers used by kernel as network
interface routine, an attacker can trick the kernel into exe-
cuting arbitrary payload by fabricating struct ifnet.

Cheri » (Yes) CHERI blocks majority of control-
flow vulnerabilities that target function and return pointers.
CHERI achieves code-pointer integrity through sealed capa-
bilities for both function pointers and return addresses. The
only way to affect the control flow is to replace one sealed
capability with another valid sealed capability.

Cheri » (No) CHERI does not enforce the backward
edge control flow. While CHERI seals return capabilities on
the stack, an attacker can still alter the control flow if the
return capability is overwritten with a valid sealed capability.
While trivial stack smashing attacks are impossible, an at-
tacker can replace one return capability with another via one
of the capability-preserving memory copy functions. CHERI
also cannot enforce control flow integrity when the user
input is used directly as function pointers like mentioned
in example listing CVE-2020-7452.

High-level specification violation High-level specification
violations can be more generally defined as violation of
expected behavior (or specification if one exists), e.g., CVE-
2022-47522. Some specification violations result in denial
of service by exhausting system resource when kernel fails
to set limits for resource allocation such as size parameter to
malloc (CVE-2024-39281), or number of nodes allocated in
a linked list(CVE-2019-5599). Specification violations are
hard to detect, as they do not manifest as hardware fault
conditions.

Cheri » (No) CHERI cannot affect outcomes of errors
that manifest as deviations from expected system behavior
due to their high-level nature.

Access control violation Access control violations are a
subset of high-level specification violations, in which access
control policy in the kernel is violated. Access control

| static bool index_hdr_check (const struct INDEX_HDR xhdr, u32
bytes)

if (!IS_ALIGNED (off, 8) || tot > bytes || end > tot |
zeof (struct NT )E) > end)
NTFS_DE)) > end) {

.ox/

Listing 4: Integer overflow (CVE-2025-22081)

violations are most often results of programming errors
due to the lack of complete understanding of all possible
invocation contexts for a given function and complexity
of access control policies. For example, CVE-2020-25584
in the FreeBSD kernel is lacking a permission check, and
therefore, a sudo process inside a jail with allow.mount
permission can change root directory outside of the jail. In
CVE-2021-27363, the cap_sys_abmin check is missing for
the iSCSI driver, which allows a normal user to end arbitrary
iSCSI sessions.

Cheri » (No) Like other high-level specification errors,
CHERI does not block access control violations due to their
high-level nature.

4.2. Vulnerability Causes

Vulnerability causes, i.e., high-level reasons that lead to
low-level manifestations, provide us with an alternative view
of what leads to a specific exploitable vulnerability. In con-
trast to manifestations, which provide an insight for whether
exploitation of a CVE can be blocked, we use vulnerability
causes, to gain a deeper understanding of whether a specific
class of software flaws can be avoided through the use of
programming language abstractions.

4.2.1. Programming Language Limitations

Limitations of low-level languages like C lead to a broad
set of flaws ranging from integer overflows and type errors
to missing object initialization and lifetime violations.
Integer overflow, underflow Integer overflow or underflow
happens when an arithmetic operation results in a number
that cannot be represented with a given number of bits (a
limitation of a programming language that makes a practical
choice to sacrifice infinite numbers for efficiency). Over-
flows can lead to a diverse group of manifestations such
as out-of-bound access and violations of expected system
behavior.

Listing 4 shows an integer overflow vulnerability in
the NTFS3 filesystem driver in the Linux kernel. On 32-
bit systems, an addition involving an offset and the size
of a struct can wrap around, leading to incorrect bounds
checks. The function index_hdr_check () attempts to val-
idate whether an offset plus the size of a directory entry
(struct NTFS_DE) stays within bounds. However, the ex-
pression off + sizeof (struct NTFS_DE) may overflow on
32-bit architectures, bypassing the intended bounds check.
The fix replaces the raw addition with size_add (), which
performs checked addition and avoids overflow by clipping
on SIZE_MAX.

Polymorphism Due to the lack of support in C, kernel de-
velopers resolve to ad hoc implementations of polymorphic



static int

2 ext2_vptofh(struct vop_vptofh_args =ap)

3 {

4 struct inode xip;
struct ufid »ufhp;

6 + _Sta sert

sizeof (struct fid),
ruct fid");

ot be larger than
8 ip = VTOI (ap->a_vp);

9 ufhp = (struct ufid x)ap->a_fhp;

10 ufhp->ufid_len = sizeof (struct ufid);
11 ufhp->ufid_ino = ip->i_number;

12 ufhp->ufid_gen = ip->i_gen;

13 return (0);

Listing 5: Polymorphism (CVE-2025-0373)

1 host->reg_va09 = regulator_get (hba->dev, "va09");

2 if (!'host->
if (IS_ERR t->reg_va09))

4 dev_info (hba->dev, "failed to get wva0l9");
else

6 host->caps |= UFS_MTK_CAP_VAO09_PWR_CTRL;

Listing 6: Confused pointer error (CVE-2023-23001)

_va09)

behavior, e.g., the use of void x to represent pointers to
arbitrary types, allocating a memory area to hold objects
of different types, encoding error conditions inside pointer
types instead of using an option type, etc. Unsafe polymor-
phism relies on unsafe type casts and frequently leads to
erTors.

For example, Listing 5 shows a buffer overflow caused
by an incorrect type cast. ext2_vptofh() is an ext2fs im-
plementation of a vnode operation, vop_vptofh, which is
used by the NFS server to create an opaque file handle.
ext2_vptofh () casts the user argument ap (which user treats
as type struct fid) as a pointer to struct ufid (line 9).
Then it writes to ap->a_fhp as if it is a struct ufid (line 5).
Howeyver, the size of struct fid is smaller than the size of
struct ufid on 64 bit architectures. This mismatch causes
an out-of-bound write (line 12).

Another example of low-level polymorphism common
in the Linux kernel is encoding of errors as ‘“negative”
pointers. In order to correctly resolve the type (error or
a valid pointer) the caller has to use the 1s_ERR macro.
Developers often forget this unsafe idiom (e.g., CVE-2023-
23006), which fails to correctly check an error. For ex-
ample, Listing 6 shows an incorrect return value check in
Linux. The original vulnerable code can lead to setting the
UFS_MTK_CAP_VA09_PWR_CTRL bit under wrong conditions
and then dereference of the invalid reg_va09 pointer. In this
example, CHERI blocks dereference of the invalid pointer,
however will still allow setting the bit which might be
exploitable 2.

Container of Another popular kernel idiom, the
container_of macro, which provides access to the
parent data structure from a given field of the member
structure, compensates for the lack of language support
for safe object composition. This creates an assumption
about the container type which may not be correct
in all execution contexts. In CVE-2023-1076, the tap
driver calls sock_init_data() to initialize the low-level
struct sock type given a struct socket. However, the
function assumes that the struct socket passed is part of
a struct socket_alloc. This type confusion manifests as
a high level access control violation, as the sk_uid field

| static void thrustmaster_interrupts(struct hid_device =xhdev) {

/* Are the expected endpoints present? =/

/
4 - u8 ep c[1] = {b_ep};

5 + u8 ep_addr([2] = {b_ep, 0};

6

7 if (!usb_check_int_endpoints (usbif, ep_addr)) {

8 hid_err (hdev, "Unexpected non-int endpoint\n");

9 }
Listing 7: Stack out-of-bounds read caused by sentinel array
(CVE-2025-21794)

can be assigned to a misconfigured value. Thus, CHERI
cannot mitigate this specific bug. In a more generic case,
CHERI would still fail to mitigate this particular cause,
as the capability pointing to struct socket would be
configured to allow the access to the parent object, hence
allowing attacker to read kernel heap memory.

Sentinel arrays (null byte termination) Due to lacking
support for a generic vector type (array with bounds), kernel
represents arrays of variable size as NULL-terminated arrays
of variable length (using NULL as a sentinel). Sentinel ar-
rays are most commonly used to represent strings, but can be
used to represent array of other types, such as USB endpoint
numbers in Linux (ep_addr in Listing 7). A common error
is a failure to properly handle the size of the array (i.e.,
check for NULL), which, in most cases, results in an out-of-
bound access. In our example, usb_check_int_endpoints ()
is called to ensure that the USB endpoint is present and is
of the correct type. The function expects a null-terminated
array of USB endpoints as an argument, but the stack array
ep_addr is not, leading to out-of-bounds read and eventually
to the kernel panic.

Improper memory initialization Improper memory initial-
ization can happen in a variety of cases, e.g., programmer
fails to pass the zero flag to malloc() (CVE-2024-8178),
forgets to use the struct initializer to initialize a struct (CVE-
2024-26638), or fails to clear registers after the syscall
return (CVE-2019-5595). Most frequent manifestation of
improper memory initialization is uninitialized memory ac-
cess. Occasionally, it can also manifest as an invalid pointer
dereference.

Object lifetimes C allows developers to access any heap
memory as long as they hold a pointer to it. Naturally,
violations of object lifetimes are frequent in the complex
kernel code (16% of our dataset). Violation of object life-
times results in use-after-free, double free, and memory and
resource leaks.

4.2.2. Protocol violations

Protocol violations are a set of programming errors that
break a protocol of expected interaction between kernel sub-
systems. The errors can stem from missing, racing, and re-
ordered invocations of interface functions that provide reg-
istration and tear down functionality, processing of requests,
control lifetimes of objects shared between subsystems, etc.

Missing or re-ordered protocol steps Kernel subsystems
interact according to a set of poorly-documented protocols,
i.e., sequences of steps that allow subsystems to register with
the kernel, process requests, react to power-down events,
request and release kernel resources, etc. Violation of the



protocol can leave the system in an inconsistent, often
exploitable state. Protocol violation can lead to a range of
manifestations such as out-of-bound access, use after free,
null pointer dereference, etc. (Table 4). For example, CVE-
2023-3090 fails to clear the socket control buffer skb->cb
that is meant to be temporarily used by each network
layer. The uncleared skb->cb buffer later gets reused as the
skb->cb->opt pointer to store data.

Sleeping in atomic contexts An important kernel invariant
is that certain execution contexts prohibit sleep and wait
functions that yield the CPU (e.g., while holding a spinlock,
executing an interrupt handler, etc.). Violating this invariant
may block the CPU for a long time or result in a deadlock or
a system hang. On a multicore system, sleeping in an atomic
context does not always result in a system hang or crash,
thus making it hard to statically detect such conditions. A
common mistake is to invoke one of the kernel functions that
can internally yield the CPU if resource is unavailable. For
example, invocation of the kernel memory allocator from
inside an atomic context requires passing the Grp_aToMIC
flag to prevent the allocator from yielding the CPU if
memory is not available.

Failure to yield Depending on the configuration, the Linux
kernel may or may not support preemption when a thread
executes inside the kernel. Long-running kernel activities
are expected to yield the CPU in a cooperative manner via
explicit invocation of the scheduler. A failure to yield results
in a denial of service, freezes of individual cores, and in the
worst case, complete system freeze. The major causes of
failure to yield vulnerabilities include infinite loops (CVE-
2019-3900) and semantic errors failing to invoke a yielding
function. For example, in CVE-2015-5364, the driver fails
to invoke the cond_resched () function.

4.2.3. Races

Data races are a specific class of protocol violations
that break atomicity of accesses in the face of concur-
rent contexts of execution: parallel threads of execution,
asynchronous interrupts, and even asynchronous hardware
updates. Execution environment of the kernel is inherently
concurrent. As a result, data race errors are frequent (15%
of CVEs in our data set, Table 4). Data races manifest
as a range of subtle bugs such as use-after-free, failure to
release CPU, null-pointer dereferences, deadlocks, logical
inconsistencies, etc.

Improper use of synchronization primitives A kernel is
inherently concurrent. The execution contexts of the kernel
include preemptable kernel threads executing in parallel
on multiple CPUs, asynchronous interrupt handlers, and
non-maskable interrupts. Moreover, the hardware that has
asynchronous access to memory via the DMA and MMIO
interfaces can update the kernel state shared with hardware
devices concurrently. In a modern kernel nearly any piece of
code has to use some type of a synchronization mechanism
such as read-copy update (RCU) primitives, spinlocks, wait
queues, condition variables, semaphores, etc. Each primitive
adheres to a well-defined usage discipline and provides

synchronization under a specific set of assumptions. Failure
to implement proper synchronization protocol results in a
variety of errors.

One of most heavily used synchronization primitives
in the kernel are spinlocks. Improper use of locks can
manifest as failure to release the CPU, use after free, etc.
A deadlock can happen when the programmer acquires
the same lock twice (CVE-2025-22098), acquires locks in
different order (CVE-2025-21807), or fails to release the
lock on an error path (CVE-2025-21672). Beyond locks,
other synchronization primitives can also lead to deadlocks,
e.g., CVE-2023-31084, which performs a blocking operation
during wait_event_interruptible ().

Use after free can occur when locks are missing. In
CVE-2020-7457 the developer fails to acquire a write lock
upon entering a method that can access a kernel object that
can be freed by another thread. Another interesting example
is CVE-2024-23848 where the lifetime of the lock itself is
mismanaged. A lock variable is a member of a data structure
that is a subject to a race condition and deallocation by
another thread.

Time-of-check to time-of-use Time-of-check to time-of-use
(TOCTOU) is a subset of race conditions that allow attacker
to leverage weaknesses in synchronization between checking
or validating a set of correctness invariants about a data
structure and the use of the data structure if it’s changed
concurrently by an attacker. A concurrent change of the data
structure can result in the semantic inconsistency and lead
to a wide variety of low-level manifestations: out-of-bound
accesses, use-after free, and so forth (Table 4).

For example, in CVE-2022-23085, a buggy
nmreq_copyin () first computes the size of a user buffer by
traversing a linked list. The code can then use the computed
size to copy the user data into the kernel heap. Just right
after the calculation of the buffer size and before copy
operation, an attacker can attempt to swap the actual user
buffer. If the buffer being swapped is smaller, the kernel
performs an out-of-bound read.

4.2.4. Semantic violations

Logic error Logic errors are failures to implement the high-
level behavior of the system, i.e., violating specific algo-
rithms or breaking a high-level property of a data structure
like a proper tree balance. For example, in CVE-2024-
26648, a null pointer dereference occurs due to a logic
error in pointer usage: the pointer 1ink is dereferenced
before being checked for NULL. While this might typically
be considered an input validation issue, in this case, the
null check was present but mistakenly placed after the
dereference. Another example is CVE-2019-5608 where the
code fails to handle the case of fragmented buffers, i.e.,
when the buffer is spread across multiple buffers. This can
cause an out-of-bounds access since the size of the buffer
will be larger than each fragmented piece. In this example,
the implementation deviates from the intended specification
of the network protocol, thus a logic error.

Improper input validation A large set of vulnerabilities can
be attributed to incorrect validation of the untrusted input



I static void
cdceem_handle_cmd (struct usb_xfer xxfer, uintlé_t hdr, int *offp

) |

m->m_len) {
'"buffer too sma 3d vs %d bytes",

if (pktlen >
CDCEEM_WARNM
pktlen, m-
if_inc_counter (ifp,

8§ + m_freem(m);

9 + return;

IFCOUNTER_IQDROPS, 1);

11 usbd_copy_out (pc, off, mtod(m, uint8_t x)

Listing 8: Improper input validation (CVE-2020-7459)

pktlen);

coming from the user space programs, network packets,
and even misconfigured or malicious devices. Such vulner-
abilities can result in a number of low-level manifestations
ranging from simple out-of-bound accesses to protocol and
semantic errors that allow bypassing security policies (Ta-
ble 4). CVE-2020-7459 in FreeBSD allows malicious USB
ethernet devices to cause out-of-bound writes beyond the
allocated packet buffers (Listing 8).

Specification error Specification errors occur when a driver
or subsystem faithfully implements the specification (in-
tended behavior), but the specification itself is flawed. This
is distinct from protocol violations and logical errors that vi-
olate specification. Specification errors stem from the flawed
understanding of what the system is supposed to do, not
its implementation. Specification errors can manifest in a
variety of ways and lead to different types of vulnerabilities
(Table 4). Whether CHERI can mitigate such issues depends
on if the flawed behavior violates memory safety. For exam-
ple, in CVE-2024-26681, when an acquisition of the mutex
fails, the driver’s specification was to retry continuously
without delay. Endless re-tries resulted in hogging of the
CPU. The specification was later changed to introduce a
delay between retries.

Another example is CVE-2021-26931 where an error
path was defined to call Buc_on (), which triggered a kernel
exception. Although this matched the intended behavior, it
created a potential denial-of-service vulnerability. The spec-
ification was updated to handle the error more gracefully
without crashing the system.

Security and permissions The kernel is responsible for
enforcing a range of system-wide security policies ranging
from classical UNIX-like file permissions to mandatory
access control frameworks (MAC) like SELinux. In Linux,
capabilities are used to grant fine-grained permissions to per-
form operations traditionally reserved for processes running
as root, such as mounting filesystems. Processes running
as root may also drop capabilities or be launched without
them. In CVE-2020-25284 (Listing 9), a missing check for
the cas_svs_apurn capability in the Ceph block device driver
allowed root processes that have dropped all capabilities
to add or remove arbitrary Reliable Autonomic Distributed
Object Store (RADOS) block devices. Missing or improper
security checks can manifest in a range of symptoms, in-
cluding access control violations and violations of high-level
specifications (Table 4).

Loop termination In many cases loops in the kernel code
use user and sometimes device-provided values as the termi-
nation criteria. An absence of range checks can potentially

| static ssize_t do_rbd_remove (struct bus_type xbus, ...) {

4 + if (!capable (CAP_SYS_ADMIN))

5 + return -EPERM;
6 +

Listing 9: Missing capability check in a RADOS block device
(CVE-2020-25284)

lead to infinite loops and thus denial-of-service and poten-
tially other manifestations.

One example is a faulty goto logic that forms an infinite
loop (CVE-2023-4010). Another involves iterators that rely
on resources that are cleaned up during device unregistration
(CVE-2025-21681), which breaks the iterator and prevents
the loop from terminating. Loop termination failures stem
from semantic errors in how loop conditions and iterator
logic are defined. As such, CHERI cannot mitigate them
unless they also involve spatial or temporal memory safety
violations.

Missing return value check A missing return value check
refers to a semantic error where the return value of a
function, particularly one that can indicate a failure or
exception condition, is not checked before subsequent op-
erations proceed. Many functions, especially those involved
in memory allocation, file handling, field initialization, or
hardware interaction, return a status code or pointer that
must be validated to ensure safe progress of the code.
Omitting such checks can cause the program to operate
under incorrect assumptions, potentially leading to crashes,
security vulnerabilities, or incorrect system behavior. This
flavor of errors is common in C where error handling is
manual hence allowing silent propagation of unchecked
values and conditions through the program. Failure to check
the return value can manifest in a variety of ways. For
example, if the check is missing from a memory allocation
function, it may result in a null pointer dereference, since
allocators commonly return a null pointer on failure.

5. Analysis

We utilize the taxonomy introduced in Section 4 to
answer the questions about the impact of the CHERI ca-
pabilities on the security of the kernel and its effectiveness
compared to Rust. Specifically, we analyze the dataset of
439 CVEs from the Linux and FreeBSD kernels and assign
a pair of cause and manifestation to each vulnerability. We
consider two possibilities: the capability revocation scheme
is either implemented or not. We then analyze commit
history of the CheriBSD kernel to understand the devel-
opment effort required to extend a full-featured kernel with
capability protection.

5.1. CHERI Impact on the Kernel

Manifestation-centric view of the dataset confirms that
CHERI blocks vulnerabilities that manifest as safety prob-
lems (Table 1, also see Table 4 for a detailed mapping
between manifestations and causes). Specifically, if we as-
sume that revocation scheme is implemented in the kernel,
CHERI can block 264 vulnerabilities (60% of the dataset).
If revocation is not supported (as it is now in the CheriBSD



TABLE 1: Manifestation-centric view of CVEs in Linux and
FreeBSD kernels

Linux FreeBSD Total

Manifestation Yes No Yes No Yes No
OOB access 67 0 27 0 94 0
Use after free 9610 0196 1710 0117 11310 01113
Double free 0 14 0 0 0 14
Uninitiali; memory access 0 15 0 16 0 31
Resource leak 0 24 0 0 0 24
Invalid pointer dereference 60 0 0 0 60 0
Explicil exceplion/panic 0 11 0 3 0 14
Control flow violation 0 0 0 1 0 1
Failure to release CPU 0 23 0 1 0 24
High level spec violation 0 8 0 10 0 28
Access control violation 0 10 0 26 0 36

Total 2231127 1151211 44127 57174
Effectiveness 66% | 38% | 34% 162% | 44% 127% | 56% | 3%

267 1154 1721285
61% 135% | 39% | 65%

TABLE 2: Cause-centric view of CVEs in Linux and FreeBSD
kernels

Linux | FreeBSD | Total |
Cause | Yes | No | Yes | No | Yes | No |
Language 56118 45183 15110 15120 71128 60 1 103
Integer overflow 6 2 5 1 11 3
Polymorphism 8 0 3 0 11 0
Container of 0 1 0 0 0 1
Sentinel arrays 2 0 2 0 4 0
Improp. mem. init. 2 12 0 14 2 26
Lifetime violation 3810 30168 510 015 4310 30173
[ Protocol [ 413 | 617 ] 0 i T [ 413 | 718 |
Missing prot. steps 413 516 0 1 413 617
Sleeping in atomic 0 1 0 0 0 1
[ Race condition [ 4816 [ 12154 ] 712 ] 116 [ 5518 [ 13160 |
Improp. use Of sync. 2614 9131 210 012 2814 9133
‘TOCTOU 212 ‘ 3123 ‘ 512 ‘ 114 ‘ 2714 ‘ 4127 ‘
S i 1151100 52167 22115 407147 1371115 921114
Logic error 26120 15121 914 13118 35124 28139
Improper input val. 56 8 13111 618 69167 14116
Spec error 1013 16123 0 7 1013 23130
Security & perm. 9 0 1 0 20
Loop termination 0 3 0 1 0 4
Missing ret. val. 23121 113 0 2 23121 315
441 1721285
|

Total 2231127 1151211
66% | 38%

7 57174 267 1 154
7% | 56% | 73%

Effectiveness 34% 1 62% | 44% 61% 135% | 39% | 65%

kernel), the total percentage of vulnerabilities blocked by
CHERI drops to 34%, making it way less effective. CHERI
blocks all invalid pointer dereferences (60 CVEs) uncon-
ditionally, and all out-of-bound accesses (94 CVEs) and
use-after-free (113 CVEs), if we assume that revocation is
implemented in the kernel. Naturally, CHERI fails to block
172 vulnerabilities that do not manifest as safety violations:
double-free (14 CVESs), uninitialized memory accesses (31
CVEs), resource leaks (24 CVEs), panics (14 CVEs), failure
to release the CPU (24 CVEs), high-level specification
violations (28 CVEs), control flow violation (1 CVE) and
access control violations (36 CVEs). CHERI fails to block
one instance of the control flow violation from our dataset,
CVE-2020-7452, which we discussed in Section 4.1. Note, it
is important to emphasize that even if CHERI fails to block
double-free and uninitialized memory access vulnerabilities
it significantly narrows the exploitation window for these
CVEs.

To get a better insight into which classes of software
flaws benefit from capability protection, we utilize the cause-
centric view of the dataset (Table 2).

Language limitations CHERI prevents exploitation of 54%
of language-related errors when revocation is implemented
(but only 21% without it). Pure capability mode blocks
exploitation of most integer overflow errors that in most
cases result in out-of-bound access (11 out of 14 language-
related causes, Table 4). However, in some cases, the over-
flown value has complex semantics and flows deep inside
the kernel, like the packet’s payload length for reassembled

ipv6 packet in FreeBSD in CVE-2023-3107, thus potentially
resulting in a high-level logical error or other manifestations.
We label such cases (3 CVEs in our dataset) as ‘No‘.

A large fraction of improper memory initialization flaws
(25 out of 28 CVEs) result in uninitialized memory ac-
cess via partially initialized data structures or non-zeroed
memory and a subsequent information disclosure. Such
vulnerabilities cannot be mitigated by CHERI. In two special
cases of improper memory initialization (CVE-2024-26867
and CVE-2022-38096), developers fail to initialize pointer
fields, which results in invalid pointer dereferences.

All 11 CVEs that are caused by limitations related to
polymorphism are mitigated by CHERI (they result in out-
of-bound accesses and invalid pointer dereferences).

Even with revocation enabled, CHERI fails to block 30
lifetime violations that manifest as memory leaks, double
free, and failures to release the CPU. CHERI fails to mitigate
a bug caused by the “container of” idiom (CVE-2023-1076
discussed in Section 4.2). Four CVEs caused by the use
of sentinel arrays lead to out-of-bounds accesses that are
blocked by CHERI.

Protocol violations CHERI can mitigate 36% of CVEs
caused by protocol violations. Out of 10 CVEs caused by
missing protocol steps, 4 CVEs that are mitigated by CHERI
result in invalid pointer dereference and use-after free. The
other 6 CVEs that cannot be mitigated by CHERI result in
high-level specification violations (2 CVEs), double free (2
CVEj), explicit exception (1 CVE), and failure to release the
CPU (1 CVE). Our dataset has only one example of a CVE
triggering sleep in the atomic context — the CVE results in
failure to release the CPU, which CHERI cannot mitigate.
Revocation changes the exploitation outcome for only one
vulnerability, CVE-2025-21968, where the programmer for-
got to follow the expected protocol to cancel the delayed
work when destroying a workqueue, leading to a classic
use-after-free.

Race conditions CHERI prevents exploitation of 81% of
race conditions if revocation is implemented (but only 19%
if it’s not). Depending on whether revocation is imple-
mented, CHERI does or does not mitigate use-after-free vul-
nerabilities (47 CVEs). CHERI can mitigate out-of-bound
access and invalid pointer dereference through enforcement
of valid capabilities. However, it cannot mitigate failure to
release the CPU, which commonly arises in race conditions
due to deadlocks or hangs. High level spec violations are
also not addressed by CHERI, as they typically involve
semantic errors that operate within the bounds of valid
capabilities.

Semantic vulnerabilities Among semantic vulnerabilities,
60% can be blocked by CHERI (50% if revocation is not
implemented). All 4 loop termination cases in our dataset
result in failure to release the CPU, which cannot be miti-
gated by CHERI. Out of 20 security and permissions cases,
18 lead to access control violations and 2 to high level spec
violations, all of which cannot be mitigated by CHERI. Our
dataset has 26 missing return value check cases, out of which
20 result in invalid pointer dereference, 2 in use after free,



TABLE 3: Cheri vs Rust (cause-centric view)

‘ CHERI ‘ Rust ‘ Vulns. blocked(%) ‘
Cause | Yes [ No [ Yes ][ No | Cheri [ Rust |
Language 43113 30 160 69 4 58% | 18% 94%
Integer overflow 3 1 4 0 75% 100%
Polymorphism 8 0 0 100% 100%
Container of 0 1 1 0 0% 100%
Sentinel arrays 1 0 1 0 100% 100%
Improp. mem. init. 1 7 5 3 12% 62%
Lifetime violation 3010 21151 50 1 59% | 0% 98%
Protocol 3 4 3 4 43% 43%
Missing prot. steps 3 3 3 3 50% 50%
Sleeping in atomic 0 1 0 1 0% 0%
Race condition 3613 7140 40 3 84% | 7% 93%
Improp. use Of sync. 1912 4121 21 2 83% 1 9% 91%
TOCTOU 1711 3119 19 1 85% | 5% 95%
S ic 84170 27141 87 24 | 76% | 63% 78%
Logic error 16 1 10 9115 17 8 64% 1 40% 68%
Improper input val. 39 5 39 5 89% 89%
Spec error 913 4110 10 3 69% | 23% 77%
Security & perm. 0 7 0 7 0% 0%
Loop termination 0 2 0 2 0% 0%
Missing ret. val. 20118 012 20 0 100% 1 90% | 100%
[ Total [ 166189 [ 681145 [ 198 [ 36 [ 70% 138% [ 84% |

and 1 each in an out-of-bound access, uninitialized memory
access, high level spec violation, and explicit exception or
panic. Three CVEs cannot be mitigated by CHERI, as they
result in from uninitialized memory access, a high-level
specification violation, and an explicit exception or panic.

5.2. CHERI vs Rust

To compare the effectiveness of protection offered by
CHERI against the language-based safety provided by Rust,
we analyze a subset of CVEs from the recent study of Rust
and its impact on the Linux kernel [25]. If we assume that
revocation is implemented in the kernel, we observe that
CHERI is able to mitigate a lower but significant portion
of vulnerabilities (166 or 70% compared to 198 or 84% for
Rust) despite the lack of language-level safety guarantees
(Table 3, also see Table 5 for the manifestation-centric
view). Without revocation, CHERI can block only 89 CVEs
or 38%.

Integer overflow Rust compiler supports a compiler flag that
inserts runtime checks for integer overflows, hence allowing
Rust to mitigate integer overflow vulnerabilities (note, the
flag is often disabled in release builds). CHERI, however,
can only mitigate an integer overflow if the CVE leads to an
out-of-bounds access (e.g., an overflown value is used as a
memory address). If the overflown value is used as data or
participates in the control logic of the program, the overflow
remains undetected.

Polymorphism Rust provides native support for tagged
unions via the enum type hence eliminating vulnerabilities
related to many flavors of polymorphism typical in the
kernel. The language manages the type tag and enforces
type safety for each variant. Rust enforces explicit pattern
matching to access the tagged values hence preventing un-
safe accesses. With the enum types, Rust provides safety for
NULL-able types like (option<T>) and return values, e.g.,
Result<T, E>.

Improper memory initialization Rust requires all fields to
be initialized when creating an instance of a data struc-

ture. This requirement mitigates a large fraction of im-
proper memory initialization errors. CHERI can mitigate
improper memory initialization flaws if they result in invalid
pointer accesses, like in CVE-2024-26867, in which a field
spriv->io was left uninitialized, and later accessed. Rust,
however, may fail to mitigate improper memory initial-
ization bugs on the boundary with unsafe APIs, e.g., the
developer may fail to use correct memory allocation flags
to zero-initialize allocated memory.

Race conditions Rust protects developers from improper
use of synchronization primitives through its ownership dis-
cipline. Specifically, Rust forces developers to encapsulate
objects in the synchronization primitives like Mutex<T>. The
programmers have to acquire the lock before accessing or
freeing the object. For example, in CVE-2024-23848, one
thread frees the object without checking if any other thread
is holding the lock. This error will be caught by the Rust
compiler as it violates the Rust lifetime rules. Similarly,
Rust prevents time-of-check-time-of-use errors that are also
introduced by improper use of synchronization primitives.
CHERI, however, provides no support for mitigating race
conditions unless they manifest as safety violations.

Improper input validation Rust does not directly mitigate
improper input validation errors, but can reduce their impact.
For example, CVE-2023-31085 and CVE-2021-20292 are
two CVEs caused by improperly checked inputs that lead to
integer overflow and double free respectively. These would
be caught by Rust with Rust’s integer overflow/underflow
checks and lifetime rules. Such vulnerabilities remain unaf-
fected by CHERI.

5.3. Development Effort

Finally, to understand the development effort required
for protecting a typical full-featured kernel with CHERI
capabilities, we analyze the commit history of the CheriBSD
operating system [36]. The process of introducing CHERI
capabilities to the FreeBSD kernel largely followed three
phases: 1) extending the kernel with support for pure-
capability user-level processes, 2) enabling pure-capability
mode of execution in the kernel, and 3) incrementally port-
ing device drivers and kernel extensions.

Pure-capability userspace The first commit that added ker-
nel support for CHERI userspace to the MIPS port of
CheriBSD was made in late 2013 [13]. Subsequent com-
mits added additional userspace infrastructure for CHERI:
a library called 1ipcreri which implements CHERI-based
sandboxing [14], adjustments to stack alignment in the libc
startup code [15], and drivers for the graphics compositor on
the CHERI MIPS hardware [16]. To support pure-capability
userspace, the kernel was compiled in hybrid mode, in
which C pointers remained plain pointers by default un-
less annotated with the _ capability attribute. Efforts to
annotate the necessary pointers as capabilities were initially
concentrated around the kernel-userspace boundary as the
kernel internally had limited interactions with capabilities.

Pure-capability kernel The work on supporting pure-
capability mode in the kernel appears to have started in late



2020 and continued through mid-2021. As of March 2025,
there are 267 commits labeled purecap-kerne1:, plus some
additional commits related to pure capability mode of exe-
cution. In total, commits related to enabling pure-capability
mode of execution in the kernel have resulted in 16,850 lines
of changes (14,016 additions, 2,834 deletions), of which
16,511 lines modified the kernel code. Additionally, 10,283
lines of changes were involved in implementing userspace
capability revocation in CheriBSD, of which 8,417 were in
the kernel.

Main changes include implementing infrastructure for
representing virtual addresses as capabilities throughout the
kernel [30], support for relocation of capability enabled
executables [27], changing kernel allocator to return capabil-
ities [29], and capability support in exception handlers [28].

Security and use of root capabilities The CheriBSD kernel
maintains several powerful “root” capabilities from which
other smaller capabilities are derived. Root capabilities are
initialized during early boot. They allow access to the
entirety of the kernel and userspace portions of address
spaces and enable the creation of sealed entry capabilities
for enforcing control flow integrity (Section 2.1). Therefore,
it is important that kernel code responsible for deriving
fine-grained capabilities from the root capabilities does so
correctly. The kernel carefully limits the use of powerful
root capabilities, by setting their bounds to specific kernel
objects with functions like cheri_setboundsexact ().

Some kernel subsystems still have access to powerful
capabilities. For example, the FreeBSD kernel has access
to all physical memory through a region of virtual memory
called amep (“direct map”). The euvs_ro_pmar macro is used
to convert a physical address to its corresponding location
in the amap region. Drivers typically then cast the result to
a typed pointer to a C scruce (or an array of them) that
correspond to hardware register layouts. Since this macro
does not allow drivers to specify upfront the length of the
hardware registers they need to access, this is problematic
with regards to spatial safety: In CheriBSD, the macro
returns a capability with bounds covering the entire dmap
region. To mitigate this issue, CheriBSD introduces the
puvs_to_pmar_pace Macro which constrains the returned capabil-
ity to only cover a single page. There are 401 invocations of
puvs_to_ovap in CheriBSD, of which 107 have been converted
to euvs_to_pvar_racs. Another example, is the Bhyve virtual
machine monitor which uses its own root capabilities with
wide access to virtual address space.

Device drivers and filesystems For most device drivers, we
observe that only limited changes are required to add support
for CHERI. A typical device driver relies on a collection
of kernel functions to access hardware interfaces, e.g., per-
form direct memory access (DMA). Those functions were
changed to support capability interfaces, e.g., a collection
of bus_dma functions to implement safe access to DMA
interfaces.

One common class of changes is improving type pre-
cision regarding integers and pointers. The CheriBSD team
maintains a fork of OpenZFS with CHERI-specific adap-

tations which total around 500 lines of changes [12]. As
an example, ZFS stores its data in nv1ist containers which
are made up of name-value pairs. It has the nv1_priv field
which stores a pointer to private data but it has an integer
type. The CHERI-enabled fork updates it to the pointer-sized
type, uint64ptr_t.

6. Related work

Kernel and device-driver vulnerabilities Device drivers and
kernel extensions have long been considered one of the main
sources of vulnerabilities in the kernel [7, 33]. In 2001,
an empirical study of faults in the Linux kernel by Chou
et al. found that device drivers contained 7 times more
faults compared to other subsystems [7]. This observation
was confirmed in 2011 despite rapid evolution of the Linux
kernel, improved testing, and static analysis [33]. Chen et
al. provided a comprehensive overview of how the kernel
gets exploited, i.e., analysis of common vulnerabilities in
the Linux kernel [4]. Li et al. performed an analysis of the
CVE database from 2014 to 2023 which shows that that
device drivers account for 16-59% of all vulnerabilities in
the Linux kernel [25]. Our work extends the dataset provided
by Li et al. with CVEs in the FreeBSD kernel as well as 100
new CVEs in the Linux kernel, and refines the taxonomy of
vulnerabilities to clearly separate the causes and effects.

Security impact of CHERI Joly et al. conducted the first
security analysis of the CHERI ISA [22]. They highlighted
main possibilities for exploitation of pure capability sys-
tems. Some of their techniques were subsequently fixed in
CheriBSD, e.g., overly permissive capability bounds, exact
capability bounds in the memory allocator, etc.

Impact of Rust on low-level vulnerabilities Early reports
estimated that nearly 70% of security issues in the low-
level code that are typically assigned a CVE are related to
memory safety and hence could be eliminated with Rust [31,
18]. A similar study reports that Rust can eliminate 53 out
of 95 known security flaws in cURL, a data transfer utility
written in C [38].

7. Conclusions

CHERI architecture is a powerful security mechanism
that can potentially alter complexity of kernel exploitation.
Our analysis shows that CHERI can block a significant
fraction of kernel vulnerabilities — while not as large as a
safe programming language CHERI can prevent exploitation
at a much lower level of development effort. We hope
that our work improves understanding of potential security
benefits offered by the CHERI capability architecture, and,
hopefully, result in wider adoption of this practical security
mechanism.
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Appendix

1. Causes and Manifestations

To reason about the impact of both low-level safety
mechanisms like CHERI and high-level approaches like
safe programming languages, it is important to understand
the relationship between high-level vulnerability causes and
their low-level manifestations. Table 4 provides a detailed
breakdown of mapping between manifestations and causes.
In our taxonomy we classify vulnerabilities into four broad
classes: language defects (131 vulnerabilities), protocol vi-
olations (11 vulnerabilities), data races (68 vulnerabilities),
and semantic errors (229 vulnerabilities).

Language limitations Language defects constitute 30% of
our dataset. Roughly 17% of total CVEs are caused by
lifetime violations. Lifetime violations (73 CVEs) are the
largest vulnerability cause along with improper input val-
idation (83 CVEs) and logic errors (63 CVEs). Lifetime
violations manifest as use after free (43 CVEs), resource and
memory leaks (19 CVEs), double free (9 CVEs), and failures
to release the CPU (2 CVEs). Most of improper memory
initialization errors (28 CVEs) manifest as uninitialized
memory access, however, 2 manifest as invalid pointer deref-
erence and 1 manifests as high-level specification violation.
Most integer overflows manifest as out-of-bounds accesses
(12 CVEs).

CHERI will be able to mitigate UAF, OOB accesses, and
invalid pointer dereferences through capability enforcement.
However, it will not mitigate explicit exceptions or panics,
as these typically follow valid code paths to the deliberate
exception. Likewise, CHERI does not prevent failure to
release the CPU, such as deadlocks or hangs, nor does it
address high level spec violations, since these do not stem
from memory safety violations but rather from semantic
logic errors.

Protocol violations Protocol violations constitute is a small
group of vulnerabitlies (2.5%) in our dataset. Missing proto-
col steps (10 CVEs) restult in a variety of manifestations: in-
valid pointer dereferences (3 CVEs), double free (2 CVEs),
high-level specification violations (2 CVEs), use-after-free,
explicit exceptions, and failure to release the CPU.

Race conditions Race conditions constitute 15% of CVEs
in our dataset and are split between 37 improper use of
synchronization primitives and 31 time-of-check-time-of-

use manifestations. Among 37 cases of improper usage
of synchronization primitives, 24 lead to use after free,
8 lead to failure to release the CPU, 3 to invalid pointer
dereference, 1 to out-of-bound access, and 1 to a high-level
specification violation. Out of 31 TOCTOU, 23 lead to use
after free, 2 to OOB access, 2 to invalid pointer dereference,
2 to explicit exception or panic, 1 to failure to release CPU,
and 1 to a high level spec violation.

Semantic vulnerabitlies and logic errors Finally, semantic
errors correspond to 52% of all kernel vulnerabilities. Out
of 63 logic error cases, 16 lead to OOB bounds access, 11 to
access control violations, 4 to uninitialized memory access,
11 to use after free, 2 to resource leaks, 5 to high level spec
violations, 3 to explicit exception or panic, 3 to failure to
release CPU, 8 to invalid pointer dereference. Among the 83
improper input validation cases, 52 result in OOB access,
15 in invalid pointer dereference, 5 in explicit exception
or panic, 3 in access control violation, 2 in use after free,
3 in high level spec violation, and one double free, CFI
violation, and failure to release CPU. Finally, out of the 33
spec error cases, 8 result in high level spec violation, 7 in
use after free, 4 in failure to release CPU, 1 in uninitialized
memory access, 3 each in out of bounds access, access
control violation, and resource leak, and 2 each in double
free and explicit exception or panic.

2. CHERI vs Rust: Manifestation-Centric View

Table 5 extends the cause-centric view of the effective-
ness of Rust and CHERI which we discussed in Table 3 with
the view centered around low-level manifestations. Like
CHERI, Rust implements both spatial and temporal safety
which allow it to block low-level safety manifestations. Rust
however, extends low-level safety with its ownership dis-
cipline and high-level programming language abstractions
that guard developers from a range of errors: double free,
resource leaks, uninitialized memory accesses, and even
some fraction of panics, failures to release the CPU, high-
level specification violations, and access control violations
(Table 5).

Compared to CHERI Rust fails to mitigate several safety
vulnerabilities: 4 out-of-bound access and 2 use-after free
CVEs. Those CVEs stem from semantic and specification-
level errors such as improper input validation and logic mis-
takes that would not be resolved by porting the code to Rust.
For example, CVE-2021-38204 illustrates a specification-
level error in the MAX-3421 driver that manifests as use-
after-free. The driver cached toggle state in memory to
reduce the SPI traffic, but continued to reference the cached
data even after the corresponding device was removed. This
stale reference caused writes to freed memory. Fixing the
issue required changing the driver’s specification to always
read and write the toggle state on each transfer. Although
Rust can generally eliminate lifetime and use-after-free
bugs, it cannot correct flawed design assumptions in low-
level I/O drivers. Such specification-level mistakes can per-
sist in Rust because they arise in unsafe hardware interaction
paths where the compiler cannot infer lifetimes. In contrast,
CHERI would invalidate the cached stale pointer, preventing



TABLE 4: Causes and manifestations

Cause vs. Manifestation 0OOB Use after Double Uninit. Resource Invalid Explicit Failure to Control High Access Total
access free free mem. leak pointer excep- release flow level spec control
access derefer- tion/panic CPU violation violation violation
ence
L
Integer overflow 11 0 0 0 0 0 0 0 0 3 0 14
Polymorphism 4 0 0 0 0 7 0 0 0 0 0 11
Container of 0 0 0 0 0 0 0 0 0 0 1 1
Sentinel arrays 4 0 0 0 0 0 0 0 0 0 0 4
Improp. mem. init. 0 0 0 25 0 2 0 0 0 1 0 28
Lifetime violation 0 43 9 0 19 0 0 2 0 0 0 73
Protocol
Missing prot. steps 0 1 2 0 0 3 1 1 0 2 0 10
Sleeping in atomic 0 0 0 0 0 0 0 1 0 0 0 1
Race condition
Improp. use Of sync. 1 24 0 0 0 3 8 0 1 0 37
TOUTOC 2 23 0 0 0 2 2 1 0 1 0 31
S ic
Logic error 16 11 0 4 2 8 3 2 0 6 11 63
TImproper input val. 2 1 0 0 15 5 1 1 3 3 83
Spec error 3 7 2 1 3 0 2 4 0 8 3 33
Security & perm. 0 0 0 0 0 0 0 0 0 2 18 20
Loop termination 0 0 0 0 0 0 0 4 0 0 0 4
Missing ret. val. 1 2 0 1 0 20 1 0 0 1 0 26
Total 94 113 14 31 24 60 14 24 1 28 36 439

TABLE 5: Cheri vs. Rust (manifestation-centric view)

I CHERI I Rust [ Vulns. blocked(%) |
Manifestation | Yes ] No | Yes T No | CHERI [ Rust |
OOB access 49 0 45 4 100% 91%
Use after free 7710 0177 75 2 100% 1 0% | 97%
Double free 0 13 12 1 0% 92%
Uninitialized memory access 0 11 5 6 0% 45%
Resource leak 0 14 14 0 0% 100%
Invalid pointer dereference 40 0 40 0 100% 100%
Explicit exception/panic 0 8 2 6 0% 25%
Failure to release CPU 0 10 3 7 0% 30%
High level spec violation 0 4 1 3 0% 25%
Access control violation 0 8 1 7 0% 12%
Total 166189 | 681145 | 198 | 36 | 70% | 38% 84%

the UAF even under the flawed specification.

Compared to CHERI, however, Rust is able to miti-
gate 12 double frees, 5 uninitialized memory accesses, 14
resource leaks, 2 explicit exceptions/panics, 3 failures to
release the CPU, 1 high-level specification violation, and
1 access control violation. Those CVEs are mitigated via
Rust’s ownership and lifetime enforcement which require
developers to resolve such bugs during the porting pro-
cess [25]. For example, all resource leaks in our dataset are
eliminated because they resulted from lifetime violations,
which Rust prevents through its ownership discipline.

Similarly, lifetime violations accounted for most double-
free cases, which Rust can mitigate. The sole case that was
not mitigated (CVE-2021-20292) stemmed from missing
protocol steps, which is not something Rust can fix. Vul-
nerabilities involving information leaks from uninitialized
memory, such as CVE-2024-26638 and CVE-2020-11494,
are prevented through a combination of Rust’s type system
and data flow analysis that enforces that all variables are
initialized before use. Note, Rust cannot fully mitigate cases
where initialization is not the sole issue. For instance, CVE-
2021-26930 illustrates how correctly initialized values can
still lead to unsafe behavior when logic errors in control
flow produce unexpected states at runtime. Since proper
mitigation of such CVEs depends heavily on their under-
lying cause, only 45% of uninitialized memory errors are
properly mitigated by Rust. Other manifestations are also
case-specific, as Rust does not guarantee protection through

a single underlying mechanism. Explicit exception/panic
cases, for example, may result from input validation errors,
missing protocol steps, race conditions, etc., which Rust
wouldn’t handle. Only 2 explicit exception/panic CVEs are
mitigated by Rust: CVE-2023-31085, a divide-by-zero error
that Rust’s runtime checks mitigate by causing a deter-
ministic panic rather than undefined behavior in languages
like C, and CVE-2020-15437, which causes a null pointer
dereference due to lifetime violation.

3. Artifacts and Reproducibility

To ensure the availability and reproducibility of our
research, we make all datasets and scripts used in this
paper available as a publicly hosted GitHub repository
(https://github.com/mars-research/cheri-impact-artifact).
The datasets contain all CVEs analyzed in our study along
with the explanation for how the labeling and classification
was done.

The dataset can be accessed as a publicly accessible
Google Spreadsheet and as a Python script that generates
the queries required for constructing tables in this paper.
We used Google Sheets for rapid prototyping and interactive
analysis of the dataset, but then cross-verified final results
with a Python script. In a spreadsheet environment, it is hard
to reason about the flow of computation which can often lead
to small but critical mistakes, A Python script, on the other
hand, provides a readable and reproducible artifact.

We accompany the dataset with detailed instructions for
reproducing the vulnerability statistics reported in this paper
(see reanuz.na in the artifact GitHub repository).

We tested the scripts for generating the data for all tables
in the paper with Python 3.9.6 and Pandas 2.3.2 on macOS
15.6.1.


https://github.com/mars-research/cheri-impact-artifact
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