Atmosphere: Practical Verified Kernels with Rust and
Verus

Jerry Zhang
University of Utah

Vikram Narayanan®
Palo Alto Networks

Anton Burtsev
University of Utah

Xiangdong Chen Zhaofeng Li
University of Utah University of Utah
Abstract

Recent advances in programming languages and automated
formal reasoning have changed the balance between the
complexity and practicality of developing formally verified
systems. Our work leverages Verus, a new verifier for Rust
that combines ideas of linear types, permissioned reasoning,
and automated verification based on satisfiability modulo
theories (SMT), for the development of a formally verified
microkernel, Atmosphere.

Atmosphere is a full-featured microkernel with a capa-
bility interface and support for strict isolation in mixed-
criticality systems. We develop all code in Rust and prove its
functional correctness, i.e., refinement of a high-level spec-
ification, with Verus. Development and verification of 6K
lines of executable code required an effort of less than 2.5
person-years (only 1.5 years were spent on verification, an-
other person-year was spent developing non-verified parts
of the system). On average, our code has a proof-to-code
ratio of 3.32:1 and completes verification in less than 20 sec-
onds on a modern laptop, which we argue is practical for the
development of verified systems.

CCS Concepts: » Security and privacy — Operating sys-
tems security; Logic and verification; - Software and its
engineering — Runtime environments; Formal software
verification.

ACM Reference Format:

Xiangdong Chen, Zhaofeng Li, Jerry Zhang, Vikram Narayanan,
and Anton Burtsev. 2025. Atmosphere: Practical Verified Kernels
with Rust and Verus. In ACM SIGOPS 31st Symposium on Operating
Systems Principles (SOSP °25), October 13-16, 2025, Seoul, Republic of
Korea. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3731569.3764821

“Work done at the University of Utah

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

SOSP °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1870-0/25/10
https://doi.org/10.1145/3731569.3764821

1 Introduction

Historically, the complexity of systems software kept it be-
yond the reach of formal verification. While several projects
demonstrated the possibility of developing verified ker-
nels [1, 2, 3, 4, 5], verification required extensive formal
expertise and significant human effort. For example, develop-
ment of the first formally verified microkernel, seL4, required
11 person-years (an additional 9 person-years were needed
for the development of formal language frameworks, proof
tools, and libraries [1]).

To address the complexity of verification, several projects
explored development of programming languages with sup-
port for a high degree of proof automation [6] and even
complete “push-button” verification that attempted direct
translation of the kernel code into a satisfiability modulo
theories (SMT) expression [7, 8, 9, 10, 11]. While achiev-
ing nearly complete automation, such approaches required
numerous simplifying assumptions about the internal orga-
nization of the kernel and its interface [12], e.g., Hyperkernel
required all paths in the kernel to be finite - the file open sys-
tem call forced the user to provide an explicit file descriptor
number for opening a file instead of choosing an available
one itself [7].

Recent advances in automated formal reasoning change
the balance between the effort and practicality of verified de-
velopment by combining ideas from programming languages
(and specifically linear type systems), separation logic, and
automation with SMT solving. First, linear type systems [13]
can take care of reasoning about aliasing and the heap, hence
enabling a significantly simpler SMT encoding of the pro-
gram [14, 15, 16]. Second, a combination of linear types and
ideas of permission-based reasoning [14, 17, 18, 19, 20] pro-
vides a practical way of reasoning about non-linear pointers
that are typical in the low-level kernel data structures like
linked lists, trees, etc.

Yet, despite impressive progress offered by recent SMT-
based verifiers [14, 19] the practicality of verifying feature-
rich, low-level system code remains an open debate . Modern
kernels implement their logic as a collection of recursive data
structures with frequent pointer references and a combina-
tion of complex, non-linear lifetimes. Recursive specifica-
tions required to reason about recursive data structures are
inherently difficult for SMT solvers, which do not support
inductive proofs natively — a typical approach is to unroll a

https://doi.org/10.1145/3731569.3764821
https://doi.org/10.1145/3731569.3764821
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731569.3764821

recursive proof a finite number of times, hence making it in-
herently unsuitable for verifying unbounded data structures.
While tools like Verus support recursive specifications and
proofs through inductive proof functions [21], the verifica-
tion complexity remains high and often becomes unmanage-
able for complex, feature-rich data structures typical in the
kernel.

In this work, we argue that automated verifiers can be used
for development and verification of low-level systems. Specif-
ically, we demonstrate the possibility of using Verus [14], an
SMT-based verifier for Rust, for developing a fully-verified
microkernel, Atmosphere. Atmosphere is similar to classi-
cal microkernels: it runs on multi-CPU hardware (under a
big lock), supports processes and threads, dynamic memory
management, inter-process communication (IPC), virtual
address spaces, IOMMU, and an abstraction of containers,
groups of isolated processes. Atmosphere is designed as a
separation kernel that supports strict isolation in mixed-
criticality systems. We develop all code in Rust and prove its
functional correctness, i.e., refinement of a high-level speci-
fication, with Verus. Moreover, our speed and development
effort approach the commodity unverified development —
while more time was spent on the design and implementa-
tion of formal specifications and proofs, a lot less effort was
required for testing.

Several design choices were critical for enabling practical,
low-effort verification of a semantically complex, pointer-
centric kernel code:

Pointer-centric design. Linear languages do not support
non-linear data structures well, e.g., Rust relies on trusted
unsafe extensions to support cyclic references. This result in
arange of suboptimal design choices: one can try to represent
kernel state without non-linear data structures [22], or just
trust unsafe smart pointer types, or implement their verified
versions and then establish high-level correctness of each
data structure along with leak freedom.

In Atmosphere, we make the design choice to embrace
the use of raw, nonlinear pointers, arguably, deviating from
canonical Rust idioms and instead use the language in a
manner similar to unsafe C. In other words, we develop
kernel data structures using raw pointers, but rely on Verus
to establish the correctness of all pointer operations via the
proof. This allows us to design performance-efficient data
structures with all optimizations typical for unsafe code,
e.g., use internal storage to represent pointers to tree nodes,
similar to Linux, use reverse pointers to support efficient,
constant-time removal from linked lists, etc.

Intuitively, such a design choice is prohibitive due to the
pervasive use of raw pointers and the complexity of the
proofs required to establish the correctness of pointer oper-
ations. Surprisingly, however, a combination of linear per-
mission pointers [14] (an abstraction offered by Verus for
reasoning about pointer operations) and the flat approach

to permission storage — allows us to avoid complexity or
recursive proofs.

Flat approach to permission storage. To keep the com-
plexity of the proof under control, we adapt a “flat” permis-
sion design, in which permission pointers to inner objects in
the hierarchy, e.g., all nodes of the page table, all threads in
the system, all nodes of a tree, etc., are stored at the topmost
level of the subsystem with the global view of a specific sub-
system in a flat map. We build on the ideas of prior systems
that advocated for flat permission storage [14, 23, 24, 25] but
push it to the extreme arguing that it is a key design choice
critical for the scalability of the proof. The global view of
the data structure gives us the freedom to encode the prop-
erties of unbounded, recursive data structures, in a simple
non-recursive manner. Moreover, it allows us to separate
reasoning about the structural (e.g., the tree has no cycles,
reverse pointers are correct) and non-structural (e.g., a new
thread is added to a process) arguments.

Manual memory management. Rust ensures memory
safety and automatic memory management via its borrow
checker and a collection of trusted pointer types. Unfortu-
nately, automatic memory management creates a semantic
gap between the formal specification of the system and the
state of its memory. Le., reasoning about global, kernel-wide
properties requires explicit knowledge of all memory in the
system. For example, the non-interference theorem requires
that one domain cannot exhaust the memory of the system.
Without explicit knowledge of the state of all memory in the
system, specifications of the memory-related system calls
become nondeterministic. Additionally, Rust type system
does not protect against memory leaks, which are possible in
the kernel due to complex cyclic dependencies and intricate
object lifetimes [26].

In Atmosphere, we abandon automated memory manage-
ment of Rust, i.e., we do not rely on the Rust borrow checker
for reasoning about lifetimes of kernel objects and instead
allocate and deallocate them explicitly (again, similar to
how it is done in an unsafe language like C). We, however,
establish the safety of all memory operations as well as
leak freedom via a proof. Note, that Rust ownership model
is still critical for establishing correctness of the code as
it is used by Verus to reason about linearity of all tracked
proof variables (e.g., linear permissioned pointers) as well
as the heap and aliasing. This design choice allows us to
support a combination of complex manual and reference
counted lifetimes in the kernel without trusting any of the
Rust pointer types.

Our experience shows that even though we embrace
pointer-centric design of the system, the combination of
permission pointer reasoning offered by Verus, careful de-
sign choices for constructing the proofs about recursive data
structures, and the level of automation provided by Verus

enables practical development of formally verified kernels.
Atmosphere is developed without relying on any unverified
types from the Rust standard library, e.g., vectors, smart
pointers, reference counting types, etc. We only trust Verus’s
native types and trusted functions for mutating tracked per-
missions (at the moment, Verus lacks support for mutable
references for tracked permissions).

Careful design of system call specifications allows reason-
ing about the functional correctness of user applications and
non-interference. Specifically, we demonstrate a scenario
where two isolated container groups can define a custom
version of non-interference, in which mixed-criticality do-
mains are completely isolated (do not interfere) but can es-
tablish communication with a verified process that provides
a shared service.

In total, the development of Atmosphere took less than
one and a half physical years and an effort of roughly two
and a half person-years. But only one and a half person-
years was spent on the development of the verified parts
(we used the second person-year on unverified parts such as
the boot and initialization infrastructure, user-level device
drivers, application benchmarks, and the build environment).
For the microkernel, we developed 6K lines of executable
code and relied on 20.1K lines of proof code (14.3K lines
of specifications, and 5.8K lines of hints to the verifier and
proofs). Out of the 14.3K lines of specifications, 2.9K lines
are used to describe top-level abstract specification of the
kernel system call interface (i.e., expected behavior of the
kernel). On average, our code has a proof-to-code ratio of
3.32:1, which is lower than prior approaches [1, 2]. Moreover,
careful design choices allow Atmosphere to finish verifica-
tion in less than 20 seconds on a modern laptop. To put this
number in perspective, it takes less time to finish verification
than compiling the kernel, which enables a truly interactive
development cycle with a verifier as opposed to traditional
recompile, reboot, and run tests approach.

2 Background: Verus

Verus is a new formal verification framework for Rust [14].
In contrast to general theorem provers [27, 28, 29], Verus
sacrifices generality for a high degree of proof automation -
Verus is designed to establish functional correctness of Rust
programs and specifically low-level systems [30]. Building on
success of automated verifiers [6, 31, 32], Verus translates the
Rust program into SMT expressions, which are then passed
to a solver (Z3 in case of Verus [33]). To improve verification
speed, Verus leverages the idea that it is possible to use the
type system, and specifically the linear type system of Rust,
to reason about aliasing and memory instead of SMT solv-
ing [15, 34, 35, 36]. This reduces the complexity of the SMT
queries by orders of magnitude, hence resulting in both faster
and more scalable verification [30]. To support reasoning
about non-linear data structures like doubly-linked lists and

raw pointers in general, Verus adapts ideas of permission-
based separation logic [17, 37]. In practice, this provides
support for verifying data structures common in the kernel,
e.g., trees of processes, lists of threads, etc., and, as we argue
in this work, allows one to structure kernel data structures
like one would do in an unsafe kernel like Linux.

Verus allows one to write executable code, specifications,
and proofs in a dialect of Rust. Executable code is written in
a subset of Rust, while specifications and proofs are written
in a functional extension of Rust, which includes logical
quantifiers like forall and exists (Listing 1).

In Verus, the typical flow of building and verifying a sys-
tem involves defining the abstract state of the system and
the expected behavior of the system interface. One then
proves that the implementation of the system is a refinement
of its high-level (abstract) specification, i.e., the system is
functionally correct. Verus allows one to define the abstract
state side by side with the concrete executable code by using
ghost variables. Ghost variables can be used to develop the
abstract model of the system (e.g., as a state machine on the
ghost state) and to aid the proofs. For example, the abstract
state of the page table in Atmosphere is a map from vir-
tual addresses to physical addresses with access permissions
(Listing 1, line 3).

Verification is static. Specifications and proofs (ghost code)
are erased by Verus using the Rust procedural macro during
the compilation time, and thus do not incur any runtime
overhead. Verified Rust code is compiled into an efficient
machine implementation that can be executed on bare metal.
As an unmanaged language (i.e., Rust enforces safety with-
out garbage collection) even on most demanding systems
workloads, Rust achieves performance comparable to unsafe
C [38, 39, 40].

To prove refinement, one establishes equivalence between
the abstract and concrete state of the system, e.g., in the case
of the page table, the abstract map and the virtual to physical
translation seen by the hardware memory management unit.
That is, for each entry in the abstract map, if the MMU does
a page table walk, the resolved physical address and access
permission are equal to the value in the map.

Specification functions allow one to express the expected
behavior of the system as a collection of pre- and post-
conditions that reflect changes to the abstract state. For exam-
ple, syscall_mmap_spec() defines the expected behavior for the
mmap() system call, which lets the process allocate multiple
physical pages and map them to a range of virtual addresses
va_range (Listing 1, lines 5-26). At a high level, our specifi-
cation captures how the system call changes the state of
the system, i.e., after the system call, each virtual address in
the range maps a unique physical page, other kernel objects
are not changed (e.g., threads and the scheduler), virtual ad-
dresses outside of the newly mapped range are not changed,
newly allocated pages were free before, and each page is
mapped uniquely, etc.

1 pub struct PageTable{

2 pub cr3: usize

3 pub map: Ghost<Map<VAddr,MapEntry>>,

4 .}

5 pub open spec fn syscall_mmap_spec(¥:Kernel, ¥’ :Kernel, t_id:
ThrdPtr, va_range: VaRange4K, perm_bits:MapEntryPerm, ret:
SyscallReturnStruct) -> bool{

6 .

7 // the state of each thread is unchanged

8 8&& ¥.thread_dom() =~= ¥’.thread_dom()

9 &8&& forall|t_ptr:ThrdPtr|

10 V. thread_dom().contains(t_ptr) ==>

11 Y.get_thread(t_ptr) =~= ¥’ .get_thread(t_ptr)

12 ... // rest of the objects in the kernel

13 // virtual addresses outside of va range are not changed

14 &8&& forall|va:VAddr| va_range@.contains(va) == false

15 ==> ¥ .get_address_space(proc_ptr).dom().contains(va)

16 == ¥’ .get_address_space(proc_ptr).dom().contains(va) && V.

get_address_space(proc_ptr)[val

17 =~= ¥’ get_address_space(proc_ptr)[va]

18 // newly allocated pages were free pages

19 &8&& forall|page_ptr:PagePtr|

20 mmapped_physical_pages_seq.contains(page_ptr)

21 ==> V. page_is_free(page_ptr)

22 // each virtual address in va range gets a unique page

23 &&& forall|i:usize| @<=i<va_range.len

24 ==> ¥’ .get_address_space(proc_ptr)[va_range@[i]].addr

25 == mmapped_physical_pages_seq[i]

26 R

27 pub fn mmap(¥: &mut Kernel, t_ptr: ThrdPtr, va_range: VaRange4K)
-> (ret: SyscallReturnStruct)

28 requires

29 old(¥).total_wf(), //global invariants

30 -

31 ensures

32 syscall_mmap_spec(old(¥), ¥, t_ptr, va_range, ret),
33 { ...

34 let tracked thrd_perm = ¥.process_manager

35 .thrd_perms. tracked_borrow(t_ptr);

36 assert(thrd_perm@.addr()== t_ptr & thrd_perm.is_init());
37 let thread: &Thread = PPtr::<Thread>::from_usize(t_ptr)

38 .borrow(Tracked(thrd_perm));
39 let proc_ptr = thread.owning_proc;
40 0}

Listing 1. Abstract and concrete state, specification and
implementation functions. For readability, we use ¥ and ¥’ as
variables that hold the state of the kernel before and after the
system call.

The concrete implementation of the mmap() system
call operates on concrete, non-ghost variables (Listing 1,
lines 27-40). The proof code provides hints to the verifier
for how to complete the proof and helps to mutate ghost
and tracked variables in the executable functions. old() is
a built-in Verus spec function that returns the state of a
variable before the function invocation. The system call re-
quires that the kernel is well-formed before the invocation
(i.e., 01d(¥).total_wf()), and ensures that the kernel is well-
formed after the invocation as well as that the kernel state
is updated according to the system call specification (i.e.,
ensures syscall_mmap_spec()).

Linear ghost (tracked) permissions. To reason about
raw pointers, Verus introduces two types: PPtr<T>, permis-
sioned pointer, a wrapper around a raw, usize pointer to an

object on the heap, and PointsTo<T>, a linear (tracked) ghost
permission to access the value through the pointer. Tracked
permissions are ghost (exist only at the proof level and are
erased during compilation time), but they strictly follow all
the Rust borrow-checking rules. Hence, they ensure linear-
ity of pointer accesses as well as the absence of lifetime
violations. A permissioned pointer and permission are allo-
cated together when the object is allocated on the heap. The
tracked permission cannot be duplicated and is consumed
during deallocation to ensure safety. Each tracked permis-
sion not only carries the ownership of the object but also
carries the state of the object used in the proofs (i.e., up-
dates to the object are reflected on the ghost state of the
tracked permissions, not the raw pointers). To use a raw
pointer in Verus, the code must prove that it possesses the
corresponding tracked permission to the pointer, and the
permission is initialized. For example, to access the parent
process from a raw thread pointer (Listing 1 line 39), one
proves that the address of the tracked permission matches
the pointer (line 36) and gets an immutable reference to the
thread’s permission (line 35). If one were to create a mutable
reference to the thread’s permission before the immutable
reference is dropped, the lifetime checks will throw an error.

3 System Architecture

Atmosphere is a full-featured microkernel with an object
capability interface. The microkernel supports a minimal
set of mechanisms to implement address spaces, threads of
execution, memory management, interrupt dispatch, inter-
process communication, IOMMUs, demand paging, and con-
tainers — groups of user processes with guaranteed mem-
ory and CPU reservations that are used to enforce isolation
between mixed-criticality systems. In Atmosphere, system
device drivers, network stacks, file systems, etc. run as user-
space processes. Atmosphere supports multiprocessor ma-
chines, but to simplify verification, we rely on a big-lock
synchronization, i.e., all interrupts and system calls execute
in the microkernel under one global lock and with further
interrupts disabled.

Processes can communicate via endpoints. A sender thread
can pass scalar data, references to memory pages, IOMMU
identifiers, and references to other endpoints. Endpoints al-
low processes to establish regions of shared memory, which
then can be used for efficient asynchronous communica-
tion [41, 42, 43].

Isolation and non-interference. To support provable
separation between groups of processes, Atmosphere imple-
ments an abstraction of a container. A container is a group
of processes that have a guaranteed reservation of mem-
ory (container quota) and CPU cores, i.e., when a container
is created, the parent container passes a subset of its own
reservation of memory and cores to a child. The microkernel
implements careful accounting of all memory allocations

T, Receive
virtual
address

T1

send(ep, va) recv(ep, va)

A (untrusted)

1 Boot (root) container

Containers

List of Ty's i

endpoints

. ; endpoints
Endpoint List af‘T2 s R
endpoints Atmosphere microkernel

Figure 1. Architecture of Atmosphere. Containers A and B are
untrusted but can establish communication with a verified container
V. Thread T, invokes the send() system call to pass a page to T,
which is already waiting on the endpoint inside the microkernel.

from any process in the container, i.e., memory allocated for
the user process or allocated by the kernel to keep metadata
about threads, endpoints, etc. The system call specifications
are designed to support user-level proofs of functional cor-
rectness and non-interference between containers. The non-
interference theorem guarantees that any arbitrary system
call from any of the isolated containers cannot change the
observable state of another.

Access control and revocation. In Atmosphere, contain-
ers form a tree to maintain parent-child relationships. Par-
ents have the capability to terminate their direct and indirect
children and harvest their resources. Inside each container,
the processes form a separate process tree, which allows
parent-child tracking of all processes in the same container.
Similarly, the parent process has the capability to terminate
child processes. Note that container and process hierarchies
are unbounded — processes and nested containers can be
created for as long as memory is available.

In contrast to classical capability microkernels [1], in At-
mosphere we make a design choice to prohibit fine-grained
revocation of resources. Resources return to the parent con-
tainer when the child container is terminated (i.e., the only
way to revoke resources of a container is to terminate it).
This design choice simplifies verification of the user code —
we have a guarantee that memory cannot be revoked while
the user code that we verify is executed. Note, that it’s possi-
ble to pass resources outside of the container via an endpoint
and then they will not be revoked. Hence, the system has
to be carefully constructed to control the flow of resources
across container boundaries and may involve trusted or ver-
ified proxy containers to enforce information and resource
flow policies.

This is, however, intentional. Atmosphere is designed to
support verification of user-level code that can be used for
enforcing such policies. In our running example, which we
discuss in Section 4.3, we demonstrate a simple scenario of

a system configuration in which multiple isolated contain-
ers can establish controlled communication with a shared
container. Specifically, we show how two mistrusting con-
tainers A and B that are otherwise completely isolated by
the microkernel can establish communication channel with
a third container V (Figure 1). We demonstrate how we can
proof functional correctness of V and non-interference be-
tween A and B. Functional correctness of V guarantees that
even without explicit revocation, resources are correctly re-
leased as V correctly implements the resource release proto-
col. Specifically, in our example, containers establish efficient
shared-memory communication channels with V. Since we
prove functional correctness of V, we have a guarantee that
1) while V exchanges shared memory with A and B it does
not leak memory between them, and 2) V always releases all
memory received from either A or B even if the container
on the other end of the communication channel crashes.

4 Verification

To gain confidence that Atmosphere is operating correctly,
we prove two theorems: refinement and well-formedness. The
refinement theorem establishes high-level functional correct-
ness, i.e., implementation of the microkernel is a refinement
of its high-level abstract specification. The well-formedness
theorem proves that high-level correctness invariants about
the system state hold after each state transition.

We model the microkernel as a state machine operating
on the abstract state. We rely on a collection of high-level
specifications that describe how the abstract state of the
kernel is updated on each kernel invocation, and a hierarchy
of invariants that describe the correctness of each kernel
data structure, as well as express cross-cutting properties
like safety and isolation.

4.1 Flat, Pointer-Centric Design

In Atmosphere, we make a design choice to embrace the use
of raw, non-linear pointers. We develop recursive pointer
data structures like linked lists, container and process trees,
and in general, freely use pointers to implement complex
logical dependencies between kernel data structures. Unre-
stricted use of pointers offers the freedom of unsafe devel-
opment, i.e., use coding paradigms and performance opti-
mizations typical for unsafe, unverified code, e.g., reverse
pointers from children to parents for efficient lookup, inter-
nal list and tree storage, etc. Not surprisingly, establishing
the correctness of pointer operations is challenging. Rea-
soning about recursive data structures is inherently difficult
for SMT solvers as they provide only limited support for
inductive proofs and can only unroll recursive proofs a finite
number of times, making them unsuitable for unbounded
verification.

1 pub struct ProcessManager {

2 pub root_container: ContainerPtr,

3 pub cntr_perms: Tracked<Map<CtnrPtr, PointsTo<Container>>>,
4 pub proc_perms: Tracked<Map<ProcPtr, PointsTo<Process>>>,
5 pub thrd_perms: Tracked<Map<ThrdPtr, PointsTo<Thread>>>,

6 pub edpt_perms: Tracked<Map<EdptPtr, PointsTo<Endpoint>>>,
7 L)

8 pub struct Container {

9 parent: Option<CtnrPtr>, // root has no parent

10 children: StaticList<CtnrPtr>, // direct children

11 depth:usize,

12 path :Ghost<Seg<CtnrPtr>>, //direct and indirect parents
13 subtree :Ghost<Set<CtnrPtr>>, //all reachable children

14 o)

Listing 2. Flat permissions

Flat organization of pointer permissions. We make a
key architectural choice: “flat” organization of pointer per-
missions for complex recursive data structures. Specifically,
in all recursive pointer data structures, we use raw pointers
like one would do in unsafe C. Yet permissions to access
these pointers are stored as a single flat map at the topmost
level of the subsystem, which provides the global view of
the entire subsystem. For example, the process manager,
a subsystem responsible for managing processes, IPC, and
scheduling, holds the permissions to all threads, processes,
containers, endpoints, etc., as a collection of flat maps (List-
ing 2, lines 3-6).

Flat ownership provides us with a global view of the data
structure and specifically allows us to: 1) convert recursive
specifications into non-recursive ones; 2) decouple the proofs
about the structure of the data structure (e.g., a tree is well-
formed) from other non-structural proofs (e.g., object life-
times); and 3) flexible traversal of the data structure (e.g., up
and down traversal is required when the tree is updated, i.e.,
we need to access both the parent and all children of the
updated node).

Global invariants. Availability of the global system state
via the permission pointer map allows us to formulate global
invariants without navigating object hierarchies, i.e., peering
into the threads of a process within a container. For example,
we can directly access the state of all the threads in the
system and establish invariants about them:

// all threads in the system are well formed
pub spec threads_wf(pm: &ProcessManager) -> bool {
forall|t_ptr:ThrdPtr
pm. thrd_perms@.dom() .contains(t_ptr)
==>
pm. thrd_perms@[t_ptr].value().wf()
}

Here, we iterate over the thrd_perms map that stores per-
missions to all threads in the system (Listing 2) to establish
that they all are well-formed (wf()).

N U R W

Non-recursive invariants. To illustrate how we use flat
ownership to avoid inductive proofs about unbounded data
structures, consider an example of a container tree — an
unbounded data structure that can grow for as long as the

system has memory (Listing 2, lines 8—14). In Atmosphere,
containers form a single recursive tree (internally, each con-
tainer has a separate tree of processes). We implement the
tree in a manner similar to unsafe C: each node has a list of
children and a pointer to its parent (Listing 2, lines 9-10).
However, all permissions to access the nodes of the container
tree are stored at the level of the process manager that holds
the non-ghost root of the container tree.

To support various aspects of the proof, we expose the
parent-child relationships between nodes as two ghost vari-
ables: path and subtree. The node sequence path describes the
path from the root to the current node (Listing 2, line 12),
and the subtree holds all children of the node.

The path along with the set of reachable children is critical
for constructing user-level proofs about the properties of
subtrees (e.g., in the isolation proof, we prove that all the
address spaces in the subtree of one isolated container are
disjoint from the address spaces in the subtree of another).

Without the flat storage, maintaining the path invariant
requires recursive definitions about the parents and their
direct children - only local information about immediate
children is available in a non-flat, hierarchical case. For exam-
ple, one first encodes that the child’s path equals the parent’s
path plus the parent:

1 pub spec fn child_resolve_path_wf(&self:Container) -> bool{
2 forall|child:Container

3 self.children@.contains(child) ==>

4 self.get_child(child).path =~= self.path.push(self)}

This recursive definition can be used to reconstruct the full
path from the root to any node in the tree. Verus supports
both automatic unrolling of the definition and constructing
a manual inductive proof. However, SMT solvers can only
unroll a recursive proof a finite number of times (due to
their bounded recursion depth) and lack native support for
inductive reasoning. Although the unbounded recursions
can be proven in Verus with the help of inductive proof
functions, the verification difficulty and manual effort are
high.

With the global view of all children available in the flat
case, we can instead describe the path invariant in a non-
recursive way:

1 pub spec fn resolve_path_wf(&self:ProcessManager) -> bool {

2 for|c:container, d:int|

3 0 <= i < self.cntr_perms@[c].value().path.len() ==>

4 self.cntr_perms@[c].value().path.subrange(@, d)

5 =~= self.cntr_perms@[self.cntr_perms@[c].value().path[d]].
value().path

6 3

Le., for any node n at depth d on the path of container c,

c¢’s subpath from the root (node at depth 0) to the node at

d is equal to the path of n. Instead of relying on recursive

reasoning about pairs of parents and children, we directly

express the correctness of the path invariant for all nodes

of the tree. Global permission map cntr_perms allows us to

reason about any node in the tree.

Modularity and isolation of structural and non-
structural proofs. Pointer-centric design of the kernel data
structures requires us to maintain structural invariants that
control the correctness of each data structure, e.g., the tree
has no cycles besides the child-to-parent reference in each
node. Maintaining such invariants is challenging as they
have to be validated on any update even if it is not structural,
e.g., mmap() changes container’s quota, but does not change
the structure of the tree. We leverage flat permission storage
along with closed specification functions to isolate structural
invariants and proofs from non-structural arguments (e.g.,
each alive container has at least one alive process).

We define structural invariants as separate closed specifi-
cation functions (the body of a closed function is only visible
in the defining module, hence incurring no verification over-
head if used in a different module). For example, executable
function new_container() creates a child container Cc for the
given parent container Cp and transitions the state of the
process manager from ® (old state) to &’ (new state). We sep-
arate structural and non-structural proofs into two functions.
First, we use a closed spec function container_tree_wf() to de-
fine all the structural invariants of the container tree in a sep-
arate container tree module. Second, an open spec function
new_container_ensures() defines how each container’s state
changes in new_container().

The new_container_ensures() function only describes the
changes in the kernel state, but does not check any
structural invariants. Hence, it has very little verifica-
tion overhead. In our example, a new container Cc is
added to the container tree. We extend the set of reach-
able children of C:’s direct and indirect parent (.subtree)
by Cc. In the preconditions, new_container() requires the
container tree to be well-formed on entry and estab-
lishes that it satisfies new_container_ensures() (line 9) on
exit. The proof function new_container_preserve_tree_wf() in
the container tree module proves that if the transition
from the old state to the new state satisfies the speci-
fication new_container_ensures(), the new state also satis-
fies container_tree_wf(). In new_container_preserve_tree_wf(),
we reveal the function body of container_tree_wf() and
use a range of proof code to help Verus finish the proof.
Therefore, in the new_container() function we can establish
container_tree_wf() (line 10) without requiring the details of
complex structural invariants of the container tree. Such an
approach to the proof structure significantly reduces the size
of the SMT search space and allows us to lower both proof
complexity and verification time.

4.2 Manual Memory Management

In Atmosphere we implement manual memory manage-
ment. This design choice allows us to support reasoning
about complex cross-cutting properties like isolation and
non-interference (this requires knowledge of all memory

1 pub fn new_container(® :8mut PM, Cp:CntrPtr, Cs:CntrPtr,...)
2 requires

3 container_tree_wf(®), ...

4 ensures

5 container_tree_wf(®’), ...

6 { ...

7 // at the end of the function

8 assert(container_tree_wf(®’)) by {

9 assert(new_container_ensures(®, @, Cp, Cp));
10 new_container_preserve_tree_wf(®, @', Cp, Cp);
1 3}

12 pub open spec fn new_container_ensures(®:&PM, ®’:&PM, Cp:CntrPtr
, Co:CntrPtr) -> bool{

13 8&8&&

14 // new container's direct and indirect parents' subtrees

15 forall|c_ptr:CntrPtr|

16 ®.cntr_perms@.dom().contains(c_ptr) &&

17 (c_ptr == Cp || !'®.cntr_perms@[Cpl.value().resolve_path.
contains(c_ptr)) ==>

18 ®.cntr_perms@[c_ptr].value().subtree@.insert(Cp) =~=

19 @’ .cntr_perms@Lc_ptr].value().subtree@

20 // other fields

21 ... // other containers are not changed

22}

23 pub proof fn new_container_preserve_tree_wf(®:&M, @’ :&PM, Cp:
CntrPtr, Ce:CntrPtr,)
24 require

25 container_tree_wf(®d),

26 new_container_ensures(®, ', Cp, Cp),
27 ensures

28 container_tree_wf(®’),

29 {...}

Listing 3. Isolation of structural and non-structural proofs

in the system) as well as support nonlinear lifetimes for a
variety of kernel data structures.

Memory allocation. In Atmosphere dynamic memory
allocation for kernel objects, e.g., containers, processes,
threads, endpoints, is done at the granularity of 4KB, 2MB, or
1GB memory pages. While it seems wasteful, in practice, the
system does not allocate a large number of objects. The sim-
plicity of the allocator, however, allows us to reason about
non-interference between containers as well as to simplify
specifications that expose the internal state of the allocator
required for maintaining safety and leak freedom invariants.
We support allocation of 2MB and 1GB superpages to support
construction of large address spaces with low TLB pressure.

The page allocator uses a page array (similar to the page
array in Linux) to maintain the metadata for each physical
page in the system. We ensure that each physical page is in
one of the following states: 1) free (on the list of free pages
in the memory allocator), 2) mapped, (mapped by one or
more processes), 3) merged, (merged to form a 2MB or 1GB
superpage), or 4) allocated (allocated for one of the kernel
data structures, eg.,a process).

The allocator uses three doubly-linked lists to store the
free pages of different sizes (4KB, 2MB, 1GB). We use the
page metadata array to efficiently merge 4KB pages into
superpages, e.g., to form a 2MB superpage out of free 4KB
pages we scan the page array and remove merged 4KB pages

from the list of free 4KB pages. Each page metadata in the ar-
ray maintains a pointer to the node of the linked list holding
the page, which allows us to perform constant-time removal
when the page is merged.

Safety. We establish safety and the correctness of all
pointer operations. We define memory safety and leak free-
dom as a combination of: 1) type safety (each allocated region
of memory is used by exactly one data structure of a correct
type), 2) spatial safety (we check that data types are within
allocated memory, and all memory accesses to variable-sized
data structures like arrays are in-bounds), and 3) temporal
safety (all pointers point to live objects, i.e., memory is not
deallocated or reallocated for another object).

To prove safety, we need to prove that all allocated mem-
ory is used by disjoint objects. To prove leak freedom, we
need to prove that the sum of all memory used by all objects
in the system equals all allocated memory (i.e., a combination
of pages in the “allocated”, “mapped”, and “merged” states).
The most challenging part of the proof is establishing safety
and leak freedom for memory allocated for kernel objects.
For this, we need to establish: 1) all the objects in the kernel
are pairwise disjoint in memory and 2) the sum of all mem-
ory used by all objects in the system is equal to the collection
of “allocated” pages.

A straightforward approach to such proof is to establish
that all the objects in the kernel are pairwise disjoint, and
then prove that the sum of the memory used for storing these
objects is equal to the collection of “allocated” pages. Such an
approach is challenging as it requires establishing explicit in-
variants for all objects (i.e., sizes and addresses) in the kernel,
making the SMT search space to grow exponentially. Instead,
we leverage the fact that objects of each specific type are
used in the kernel in a hierarchical manner, i.e., page tables
are used in the memory subsystem; threads, processes, and
containers are used by the process management subsystem,
etc.

In Atmosphere, for each data structure in the kernel, we
implement the page_closure() specification function, which
returns a set of pages used by the data structure and all ob-
jects owned by it. Here, the ownership means either a direct
ownership of Rust (e.g., an array of objects) or ownership
via a tracked permission. For example, a page table does not
own any other objects, besides the physical pages used to
construct the page table.

Bottom-up recursive memory reasoning. To reason
about the system’s memory usage, we hierarchically main-
tain the page_closure() for each kernel object, prove pair-
wise disjointness locally, and merge the page_closure() of
all subsystems. For example, the virtual memory manage-
ment subsystem owns the memory of all page tables and
IOMMU page tables. The subsystem maintains a set of in-
variants to ensure that each page table and IOMMU table’s
page_closure() are pairwise disjoint, and their union is equal

1 pub fn alloc_page_4k(alloc:&mut Allocator)

2 ensures

3 alloc.free_pages_4k() =~=

4 old(alloc).free_pages_4k().remove(ret.o),
5 alloc.allocated_pages_4k() =~=

[3 old(alloc).allocated_pages_4k().insert(ret.o),
7 ..

8

9 pub fn new_endpoint(pm:&mut ProccessManager)
10 ensures

11 pm.page_closure() =~=

12 pm(self).page_closure().insert(page_ptr),

14 // allocate new endpoint
15 let (p_ptr,mut p_perm) = self.page_alloc.alloc_page_4k();
16 self.proc_man.new_endpoint(p_ptr, p_perm, ...);

Listing 4. Establishing safety of allocation

to the page_closure() of the virtual memory management sub-
system. With this, we can easily infer the desired memory
properties (i.e., all the objects in the kernel are pairwise dis-
joint) without explicitly proving them as global invariants.

Explicit memory allocator state. Establishing leak free-
dom and cross-cutting properties of the memory subsys-
tem requires visibility of the state of the memory allocator.
Specifically, explicit invocation of the allocation and deal-
location APIs enable exact reasoning about the allocator’s
state through the API’s pre- and post-conditions. We expose
the internal state of the allocator as sets of free, allocated,
merged, and mapped pages. Each time we allocate memory
(i.e., a page), we need to establish that: 1) the page closure of
the allocating subsystem is extended by the new freshly allo-
cated page, 2) the set of total “allocated” pages is extended by
this page, 3) the page was previously “free”, i.e., not used by
any other subsystem, and 4) other subsystems in the kernel
are not changed.

For example, allocation of a new endpoint uses the post-
condition of the alloc_page_4k() (allocates a page and a per-
mission to use it), and new_endpoint() (consumes the page
and adds the new enpoint to the calling thread) functions
(lines 15-16, Listing 4). First, we establish that a newly al-
located page was previously not allocated via the postcon-
ditions of alloc_page_4k(). This ensures that using this page
to form a new endpoint object in the kernel is safe. Further-
more, the postconditions of the two functions ensure that
the set of allocated pages grows by exactly one page, and
process manager’s page_closure() grows exactly by this one
page as well. Since other subsystems do not change, we can
prove that the memory safety and leak freedom invariants
still hold.

Consistency of page table updates. Even though Atmo-
sphere operates under a big lock, threads of the same pro-
cess scheduled on different cores might access the page table
while it is updated by one of the threads. Floyd-Hoare rea-
soning only guarantees the correctness of the final state, not
that intermediate states during execution are well-formed or

consistent. We model each page table update (i.e., each write
to both leaf and intermediate levels) as a separate step. For
any step that does not modify the last-level page table entry,
we prove that the address space (abstract mapping) of the
page table does not change. For any step that modifies the
last-level page table entry, exactly one entry in the page table
abstract mapping is changed (adds a new entry or removes
an existing entry).

4.3 Noninterference

Atmosphere is a separation kernel designed to support isola-
tion and noninterference between containers. In most real-
world scenarios, complete isolation is impractical - isolated
subsystems need to communicate, but in a controlled man-
ner (e.g., access multiplexed device drivers, etc.). Careful
design of the system call interface specifications allows us to
use Atmosphere for deployment of mixed-criticality systems
in which users can define their custom notions of isolation
and non-interference, i.e., support isolation across mission-
critical domains and yet allow them to communicate in a
controlled manner.

Specifically, we develop a proof of isolation and non-
interference for a system that executes three containers: two
untrusted, unverified, and isolated containers A and B and
a verified, shared container V (we discuss how such proof
can be generalized for different system configurations). A
and B do not interfere with each other but are allowed to
establish communication with V (Figure 1). Naturally, since
both A and B can communicate with V, their isolation and
noninterference relies on V’s functional correctness, which
we prove. However, we make no assumptions about A and
B. They are not trusted, not verified, and thus can perform
arbitrary system calls with arbitrary system call arguments.

We implement V as a container with one process that runs
one thread of execution. This simplifies verification, but is
arguably practical for simple containers that implement sys-
tem security policies. I/O intensive shared device drivers
will require proof about concurrent code, which we leave as
future work (note that such proofs are feasible due to limited
concurrency in modern device drivers, which separate con-
trol and data planes and avoid sharing and synchronization
across threads in the data plane).

We implement V as an event-driven state machine: it ex-
ecutes a loop that checks for incoming IPC messages from
A and B, and reacts to the actions from A and B according
to its abstract specifications. V may receive pages and end-
points from A and B, but never shares them across container
boundaries.

“Flat” system call specifications. The proof of non-
interference depends on the following state of the system:
a) The state of the entire kernel (¥). b) All subcontainers Cy4,
Cg, Cy that are recursively created from A, B, and V. c¢) All

processes Py, Pg, Py from all containers in Cy4, Cg, Cy respec-
tively. d) All threads T4, Tp, T, from all containers in Cy4, Cg,
Cy respectively.

We leverage flat permission storage to provide direct ac-
cess to the state of the kernel objects, i.e., state of all con-
tainers, threads, processes, etc. For example, to construct T4
with recursive ownership, one would need to rely on two un-
bounded recursive specs to first walk the container subtree
to form C4 (by recursively merging the children containers
level by level), second walk the process tree of each container
to form P4, and finally create a union of the threads of P4
to form T,. With flat storage, we can maintain the sets of all
reachable child containers in .subtree and simply construct
T, with the following bidirectional invariant to ensure Ty
contains and only contains all the threads in Cy:

1 spec fn T_A_wf(¥:Kernel, A:CntrPtr,T,:Set<ThrdPtr>) -> bool{
2 &&& forall|c_ptr: CntrPtr, t_ptr:ThrdPtr|

3 (c_ptr == A || ¥Y.get_cntr(A).subtree@.contains(c_ptr))
4 && Y.get_cntr(c_ptr).owned_thrds@.contains(t_ptr)

5 ==> T,.contains(t_ptr)

6 88& forall|t_ptr:ThrdPtr| T,.contains(t_ptr) ==>

7 (¥.get_thrd(t_ptr).owning_cntr == A || ¥.get_cntr(A)

8 .subtree@.contains(¥.get_thrd(t_ptr).owning_cntr))}

Isolation. We define and prove isolation between P, and
Pg as two main invariants: memory and endpoint isolation.

1 pub open spec fn memory_iso(¥: Kernel, P,:Set<ProcPtr>, Py:Set<
ProcPtr>) -> bool{

2 forall|a_p_ptr: ProcPtr, a_va:VAddr,

3 b_p_ptr: ProcPtr, b_va:VAddr|

4 P,.contains(a_p_ptr) && Pg.contains(b_p_ptr) &&

5 ¥.get_address_space(a_p_ptr).dom().contains(a_va) &&

6 ¥.get_address_space(b_p_ptr).dom() .contains(b_va)

7 =>

8 ¥.get_address_space(a_p_ptr)[a_val.addr !=

9 ¥.get_address_space(b_p_ptr)[b_val.addr}

0

1

pub open spec fn endpoint_iso(¥: Kernel, T,:Set<ThrdPtr>, Ty:Set
<ThrdPtr>) -> bool{
12 forall|a_t_ptr:ThrdPtr, a_e_idx: EdptIdx,

13 b_t_ptr:ThrdPtr, b_e_idx: EdptIdx|

14 T,.contains(a_t_ptr) && Tg.contains(b_t_ptr)

15 ==>

16 ¥.get_thrd_edpt_descriptors(a_t_ptr)[a_e_idx] !=
17 Y.get_thrd_edpt_descriptors(b_t_ptr)[b_e_idx]}

That is, the pages mapped by the address spaces of P4 are
proven not to be mapped by the address spaces of Pg. Ad-
ditionally, to allow fast communication, shared endpoints
can be established between Ty, and T4 or Ty, and T, but not
between T4 and Tg:

To prove that A and B cannot break the memory and com-
munication channel isolation, we show that after a random
system call with random system call arguments from any
thread in T, and Tg, the memory isolation and endpoint
isolation are still satisfied:
forall|¥: Kernel, ¥’: Kernel, t:ThrdPtr, a:SysCallArg]|
Step(¥, ¥, t, a) & (T,.contains(t) || Tz.contains(t)) &&

1

2

3 memory_iso(¥, P,, Pg) &% endpoint_iso(¥, T4, Ty)

4 ==> memory_iso(¥’, P,, Pg) && endpoint_iso(¥’, T,, Tp)

Noninterference. At a high level, the non-interference
theorem establishes that isolated containers cannot observe
actions of each other. Similar to prior systems [44, 2], we
leverage the unwinding theorem [45, 46] stating that it’s
sufficient to establish unwinding conditions to prove the
global noninterference property. Specifically, we leverage
unwinding conditions as formulated by Luke et al. [47]:

Output consistency (OC): Output consistency requires the
kernel to provide the same system return value given two
identical system states. In Atmosphere, the return value of
system calls is deterministic and only depends on the state of
the old kernel state and arguments. According to all system
call postconditions, same kernel pre-states always result in
same kernel post-states and return values. Thus, OC is trivial
to prove.

Step consistency (SC): SC requires that the system state re-
mains equivalent for one domain before and after any action
is performed by another domain. In our model, the observ-
able state of a container subtree Cy includes its memory
quotas, address spaces, schedulers, endpoints, state of the
processes, etc. We show that the observable state of B and the
system call return value of each arbitrary system call from
container B remains unaffected before and after an arbitrary
system call from container A.

Local respect (LR): Local respect requires that an arbitrary
system call executed by one container cannot affect the ob-
servable state of another distrusting container. In our setup,
since only A and B are isolated, LR is proven when we prove
SC.

Discussion and limitations. We illustrate how nonin-
terference and isolation can be established for a system con-
figured with three container hierarchies: A, Band V. To make
a similar poof but for a different system configuration, one
has to define the desired isolation and noninterference in-
variants. We argue that such proofs will be similar to the one
we discuss here. The key observation is that this and similar
noninterference proofs leverage the flat state of the kernel,
which allows accessing it in a non-recursive manner. In the
case, when any number of isolated containers do not com-
municate, the proof is a strict subset of the proof presented
here.

In the non-interference proof, we only reason about the
effects of system calls, but not the user code. Despite being
isolated on different CPUs, user processes can introduce tim-
ing channels in shared caches and other hardware resources.
Also, at the moment, Atmosphere allows execution of several
long-running system calls (e.g., operations like mapping and
sending large regions of memory, or terminating containers
and processes), which can block other processes due to a big
lock in the kernel for a long period of time and leak timing
information. This limitation can be removed in the future
by bounding the memory region size and by implementing
iterative versions of the “kill” system calls similar to seL4.

5 Trusted Computing Base

Formal verification enables us to establish the correctness of
the system and eliminate a range of errors that are typical
in low-level code. Yet, it is important to be explicit about all
software and hardware layers that form the trusted comput-
ing base (TCB) of the system, and hence can still contain
flaws and vulnerabilities: 1) The Verus frontend responsible
for translating Rust and Verus code into SMT verification
conditions. 2) The underlying SMT solver (Z3). Verus uses Z3,
and any unsoundness in it will compromise the soundness
of verification. 3) The Rust compiler. We trust the compiler
to correctly perform borrow checking, type checking, and
code generation. We also assume that the toolchain provides
correct implementations of core intrinsics. Other standard
build tools (assembler, linker, etc.) are also used to create the
final microkernel binary. 4) The Rust core library (core). The
Rust standard library contains three parts: core implements
core routines for primitive types (e.g., u64: :pow()) and stan-
dard abstractions (e.g., Option: : is_some()), while alloc and std
build on top of it to provide heap-allocated data structures
and platform-specific interfaces. Atmosphere only makes use
of a minimal subset of core. We do not rely on alloc and std,
and our code does not use many common types like vectors,
strings, Rc and Arc, hash maps, mutexes, etc. 5) Specifications
of core Rust data structures and routines. These specifica-
tions model the expected behavior of core data structures
and routines as implemented in compiler intrinsics and core.
For example, Atmosphere trusts that a Rust slice behaves
like a seq with a fixed length. 6) Axioms missing in Verus. For
example, if we remove an element from a unique sequence,
the result sequence is still unique (around 700 lines of spec).
These axioms can be verified in the future. 7) Setter functions
for mutating tracked ghost permissions and Rust core primi-
tive data structures. Verus currently has very limited support
for &mut. This adds 300 lines of executable code with 1900 lines
of specifications. 8) Sequences of assembly and trusted Rust
code. The fragments of assembly code (172 lines) implement
entry and exit trampolines for system call and interrupt han-
dlers. Trusted Rust code (total of around 3,000 lines) imple-
menting hardware interface to configure IOMMU (465 lines),
setup execution environment of the kernel (321 lines), initial-
ize interrupt handling (293 lines), advanced programmable
interrupt controller (287 lines), interrupt descriptor table
(179 lines), initialize task state segment (TSS) and global de-
scriptor table (172 lines), fast system call entry via sysenter,
handle kernel command line (123 lines), initialize per-CPU
data structures and application processes, etc. 9) The At-
mosphere boot loader. We implement a minimal, trusted
boot loader that sets up the initial runtime environment
for the verified kernel (e.g., enumerates available physical
memory, sets up stacks, initializes interrupt controllers, etc.).
10) The trampolines for system calls, 11) Finally, we trust
the CPU (i.e., the silicon implementation, CPU microcode

Name ‘ Language ‘ Spec Lang. ‘ Proof-to-Code Ratio ‘

seL4 C+Asm | Isabelle/HOL 20:1 [1]
CertiKOS C+Asm Coq 14.9:1 [2]
SeKVM C+Asm Coq 6.9:1 [50]
Ironclad Dafny Dafny 4.8:1 [4]
NrOS Rust Verus 10:1 [24]
VeriSMo Rust Verus 2:1[23]
Atmosphere Rust Verus 3.3:1

Table 1. Proof effort for existing verification projects.

l System [1 thread[S threads[Proof[Exec.[P/E Ratio

NrOS page table| 1m 52s 51s 5329 | 400 13.3
Atmo. page table| 33s - 2168 | 496 4.37

Mimalloc 8m 12s | 1m40s |13703| 3178 43
VeriSMo 61m 24s | 12m 11s |16101| 7915 2.0
Atmosphere | 3m29s | 1m7s |20098| 6048 3.32

Table 2. Verification time of different systems on CloudLab c220g5

and all other firmware executing on hidden CPU cores like
power management microcontroller), DRAM, and the main
board including the system management mode (SMM) and
Inte]l Management Engine (ME) that have access to physical
memory of the machine. We do not trust physical devices
that we can run behind an I/O Memory Management Unit
(IOMMU).

6 Evaluation

Primarily, we evaluate Atmosphere to answer two main ques-
tions: 1) How practical is the development of verified kernel
code with Verus in terms of verification speed and develop-
ment effort? 2) Can Atmosphere be used as a practical kernel
which does not sacrifice performance for formal correctness?
To ensure repeatability of experimantation, we conduct eval-
uation on the publicly available CloudLab [48] machines:
€220g5, c220g2, and d430 [49]. We measure the verification
time on ¢220g5, which is configured with two Intel Xeon
Silver 4114 10-core CPUs running at 2.20 GHz, 192 GB RAM.
Network experiments use a pair of ¢220g2 machines with In-
tel X520 10Gb network interfaces. NVMe experiments utilize
d430, which are configured with PCle-attached 400GB Intel
P3700 Series SSDs. All the machines run 64-bit Ubuntu 20.04
with a 5.4.0 kernel. To reduce variance in benchmarking, we
disable hyper-threading, turbo boost, CPU idle states, and
frequency scaling for all the experiments.

6.1 Verification complexity

To put the verification effort of Atmosphere in perspective
with prior work, we collect the proof-to-code ratio across
several recent kernel projects. Atmosphere has a proof-to-
code ratio of 3.32:1, which is a good improvement compared
to the existing formally verified microkernels sel4 [1] and
CertiKOS [2], which have proof-to-code ratio of 20:1 and
14.9:1, respectively (Table 1). Interestingly, VeriSMo has an
even lower proof-to-code ratio of 2.0. Two factors contribute
to the low proof-to-code ratio. First, arguably, VeriSMo is

l System call | Atmosphere [selL4 [

Call/reply 1,058 1,026
Map a page 1,984 2,650

Table 3. Latency of communication and typical system calls (cycles)
on c220g5

1.2
2 1 — —— —+
o
508
206
50.4
g 220 ——
302 133000 —o—
0 T T T T T 1
0 5 10 15 20 25

verification time in seconds

Figure 2. Verification time for each function

semantically less complex than Atmosphere. Second, the
VeriSMo development team prioritized reducing proof effort
over verification speed - by significantly relaxing the verifi-
cation timeout limit, VeriSMo achieves a low proof-to-code
ratio at the cost of higher verification time.

Verification time. Rapid verification is essential for in-
teractive development. On the c220g5 server, Atmosphere
finishes full verification in about 1 minute 10 seconds with 8
threads (Figure 2). On a modern laptop with a recent Intel
19-13900hx CPU, Atmosphere finishes full verification in just
15 seconds (on 32 threads), and 47 seconds (on 1 thread).

6.2 Impact of flat design

To isolate the impact of our flat approach, we compare the
proof-to-code ratio and verification times for the page table
subsystems in NrOS [51] and Atmosphere — both systems
use Verus to implement a comparable page table logic with
similar verification goals, and a similar size of executable
code.

We implement support for a 4-level page table with dif-
ferent page sizes: 4KiB, 2MiB, and 1GiB. The abstract state
of the page table is represented by three maps (one for each
page size) from virtual to physical addresses along with the
permission bits. The tracked permissions of each PML level
are stored at the topmost level of each page table. NrOS’ page
table, however, follows Rust recursive ownership.

Refinement proof. The page table uses a range of invari-
ants to prove its structural invariants (e.g, each entry in any
PML level only maps to the next PML level). Most impor-
tantly, it proves refinement between its concrete state and its
abstract mapping. For example, in mappings of 4KiB pages,
we use four-level spec functions to simulate the address res-
olution of the MMU and prove that the mapping_4k() matches
what the MMU will theoretically see.

1 forall|l4i: L4I,13i: L3I,12i: L2I,11i: L2I|

2 0<=14i<512 88 0<=13i<512 8& 0<=12i<512 88& 0<=11i<512

3 ==>PT.mapping_4k().contains(index2va((14i,131,121i,111)))
4
5

== PT.resolve_mapping_4k(14i,13i,12i,11i).is_Some()
forall|l4i: L4I,13i: L3I,12i: L2I,11i: L2I|

Other additions ===
Other deletions

Verified additions T
Verified deletions

Figure 3. Horizon commit history (vertical lines separate versions)

0<=14i<512 && 0<=13i<512 && 0<=12i<512 && 0<=11i<512

&& PT.resolve_mapping_4k_11(14i,131,12i,11i).1is_Some()
==> PT.mapping_4k()[index2va((14i,13i,12i,11i))]

=~= PT.resolve_mapping_4k(14i,131,12i,11i).unwrap()

N-JNCCREN NN

The first forall statement ensures that the domain of virtual
addresses mapped in the concrete page table is equal to the
domain of the abstract mapping. The second forall statement
ensures the equivalency of the mappings.

One of the most complicated parts of the proof is to es-
tablish that if the page table adds a new virtual-to-physical
mapping, the abstract mapping of other virtual addresses
does not change. In NrOS, such a proof requires manual un-
rolling of the recursive specs through different PML levels
and requires around 200 lines of proof code in map_frame_aux ()
function [51]. Since we have direct access to the states of
all page table levels, no unrolling is needed. With around 30
lines (PML4 requires 7 lines) of proof code, we directly prove
that all other entries in all PML levels do not change:

1 pub fn map_4k_page(PT: &mut PageTable, dst_14i:L4I, dst_13i: L3I,
dst_12i: L2I, dst_11i: L2I, va:VAddr, ...)

2 { //executable code

3 // other virtual addresses at PML1,2,3 do not change

4 //other virtual addresses at PML4 do not change

5 assert(forall|l4i: L4I,13i: L3I,12i: L2I, 11i: L1I|

6 0<=14i<512 88 0<=13i<512 88 0<=12i<512 8& 0<=11i<512

7 &8 ((dst_14i, dst_13i, dst_12i, dst_11i)

8 1= (141,131,121,121))

9 ==> PT.resolve_mapping_11(14i,13i,12i,11i) =~=

0 0ld(PT).resolve_mapping_11(14i,13i,12i,111));

1

—_

}

Compared to NrOS [24], Atmosphere page table has 3x
lower proof to code ratio (13.3:1 and 4.4:1). Moreover, on a
single thread, verification of the Atmosphere’s page table is
over 3x faster.

6.3 Development speed and effort

We completed development of Atmosphere in three stages,
or, more specifically, we developed three versions, which
were clean-slate rewrites borrowing design and implementa-
tion lessons from a previous version (Figure 3): 1) version 1
(2 months, one person) resulted in a simplistic kernel cen-
tered around the process manager and the page allocator,
which was aimed primarily at familiarizing ourselves with

6 Linux E==2 atmo-driver BEEEE atmo-c2 Emmm
DPDK atmo-c1 /——3 line rate = = =

1
5121

e

l)

[2]

X 44

o

0

Tx-1 Tx32 Rx-1 Rx-32 Fwd-1 Fwd-32

Figure 4. Ixgbe driver performance

Verus, 2) version 2 (8 months two people, clean-slate rewrite)
resulted in a simple but functioning kernel with inital ideas
of pointer-centric design, falt permission organization and
manual memory management, and 3) version 3 (4 months,
one person, 50% code reuse from the previous version) de-
veloped support for revocation via recursive container trees,
superpages, practical user-level specifications and support
of isolation and noninterference proofs. The entire devel-
opment of Atmosphere took around 2 person years, with
roughly 14 months spent on development of verified code.

6.4 Microbenchmarks

We perform several microbenchmarks on a ¢220g5 node on
CloudLab. Note that here we run experiments under the KVM
hypervisor with hardware virtualization enabled. We use
KVM as it allows us to disable turbo boost and frequency scal-
ing for a more accurate measurement. We compare our cal-
l/reply with the synchronous IPC mechanism implemented
by the seL4 microkernel (we use the IPC call test). An IPC
send/receive mechanism in Atmosphere takes around 1058
cycles, whereas seL4 takes 1026 cycles. We also measure the
overhead of mapping a page which takes around 1984 cycles
Atmosphere and 2650 cycles in seL4, although the system
calls are not strictly equivalent. Overall, careful use of Rust
allows Atmosphere to achieve performance comparable to
carefully-optimized C.

6.5 Device Drivers

In Atmosphere, device drivers can either run as: 1) part of
the user process (similar to user-level device drviers like
DPDK [52] and SPDK [53]), or 2) as a separate user process
that communicates with clients via fast asynchronous IPC.
We develop and evaluate two device drivers: 1) an Intel 82599
10Gbps Ethernet driver (Ixgbe), and 2) an NVMe driver for
PCle-attached SSDs.

6.5.1 Ixgbe Network Driver. We compare the perfor-
mance of Atmosphere’s Ixgbe driver with a highly-optimized
driver from the DPDK user-space packet processing frame-
work [52] on Linux. Similar to DPDK, we use polling mode to
achieve peak performance. We configure Atmosphere to run
several configurations: 1) atmo-driver: the benchmark appli-
cation is statically linked with the driver (this configuration
is very similar to user-level packet frameworks like DPDK).

2) atmo-c2: the benchmark application runs in a separate pro-
cess on a different core, and communicates with the driver
driving on a separate core through a shared-memory ring
buffer. 3) atmo-c1-b1 and atmo-c1-b32: the benchmark applica-
tion runs as a separate process on the same CPU alongside
the driver. The application uses a shared ring buffer with
the driver and invokes the driver through an IPC endpoint
which involves a context switch. The number after b repre-
sents the batch size of the request, i.e., the number of requests
the application sends to the ring buffer before invoking the
driver.

We send 64 byte UDP packets and measure the perfor-
mance on two batch sizes: 1 and 32 packets (Figure 4). For
packet receive tests, we use Pktgen, a packet generator that
utilizes DPDK framework to generate packets at line-rate.
Linux achieves 0.89 Mpps as it uses a synchronous inter-
face and crosses the syscall boundary for every packet and
goes through layers of abstraction in the kernel (Figure 4).
On a batch of 32 packets, both drivers achieve the line-rate
performance of a 10GbE interface (14.2 Mpps).

To understand the impact of interprocess invocations,
we run the benchmark application as a separate process
(atmo-c1-b1) and (atmo-c1-b32). Atmosphere can send and re-
ceive packets at the rate of 2.3 Mpps per-core with one con-
text switching per packet (atmo-c1-b1). On a batch of 32 pack-
ets, the overhead of context switching is less pronounced
and the application achieves 11.1 Mpps (atmo-c1-b32).

6.5.2 NVMe Driver. To understand the performance of
Atmosphere’s NVMe driver, we compare it with the multi-
queue block driver in the Linux kernel and a well-optimized
NVMe driver from the SPDK storage framework [53]. Simi-
lar to SPDK, the Atmosphere driver works in polling mode.
Similar to Ixgbe, we evaluate NVMe driver under various con-
figurations: 1) statically linked (atmo-driver); 2) application
and driver run on different cores and communicate through
shared ring buffer (atmo-c2); 3) application runs on the same
core with the driver and uses the endpoint to invoke the
driver process after sending a batch of requests (atmo-c1-b1
and atmo-c1-b32).

We perform sequential read and write tests with a block
size of 4KiB on a batch size of 1 and 32 requests (Figure 5).
On Linux, we use fio, a fast I/O generator; on SPDK and
Atmosphere, we develop similar benchmark applications that
submit a set of requests at once, and then poll for completed
requests. To set an optimal baseline for our evaluation, we
chose the configuration parameters that could give us the
fastest path to the device. Specifically, on Linux, we configure
fio to use the asynchronous libaio library to overlap I/O
submissions, and bypass the page cache with the direct I/O
flag.

On sequential read tests, fio on Linux achieves 13K IOPS
and 141K IOPS per-core on the batch size of 1 and 32, respec-
tively (Figure 5). On a batch size of 1 and 32, the Atmosphere

fio E==3 atmo-driver ===
SPDK atmo-c1 C——1

atmo-c2 ===

500

400
< 300
(7]

& 200

100

0

read-4k-1 read-4k-32 write-4k-1 write-4k-32
Figure 5. Performance of the NVMe driver

Linux E=3 atmo-c1-b1 —=3 nginx =2 atmo ===
DPDK BN atmo-c1-b32 E=mm '
atmo-c2 === line rate = = =

'
S
n
=]
)
'

N
'
o
=]
'

IS
'

Pkts/s (Millions;
o=
Pkts/s (Thousands)
g B

0
maglev httpd

o

Figure 6. Performance of Maglev and Httpd

c-dpdk atmo-c2 EEEEE atmo-c1-b32 ==
S8
E
2
x
o
0
R S P S NP\
b3 o 4 b o 4
& & 9 S »\Q)"\ Q),L,'b

A oV

Figure 7. Key-value store

driver performs similar to SPDK, achieving maximum device
read performance. On sequential write tests with a batch size
of 32, Linux is within 3% of the device’s maximum through-
put of around 256K IOPS. Atmosphere driver incurs an over-
head of 10% on all the configurations for writes (232K IOPS).

6.6 Application Benchmarks

To further evaluate the performance of Atmosphere under
real-world scenarios, we develop three data-intensive appli-
cations on top of the device drivers: 1) the Maglev load bal-
ancer (Maglev) [54], 2) a memcached-compatible key-value
store (kv-store), as well as 3) a tiny web server (httpd).
Since device drivers in Atmosphere run as user space
processes, we evaluate the applications in two scenarios.
First, when the application itself communicates with the
device driver through shared memory, and second, when the
device driver runs in the same process with the application.

Maglev load-balancer. Maglev is Google’s load balancer
with an algorithm that evenly distributes incoming traf-
fic among backend servers [54]. To compare with Atmo-
sphere we develop a normal Linux program that uses the
socket interface, and a DPDK-powered application that di-
rectly accesses the network card via PCle passthrough [52].
With a normal Linux socket interface, Maglev only achieves

1.0 Mpps per core because of both the overhead of the sys-
tem call interface and an overly generic design of the Linux
network stack (Figure 6). The DPDK-powered application
has direct access to the NIC and achieves 9.72 Mpps per core.
In Atmosphere, Maglev achieves 13.3 Mpps with the device
driver running on a separate core with communication es-
tablished over a shared ring buffer (atmo-c2). With Maglev
invoking the device driver on the same core, the load bal-
ancer runs at 8.8 Mpps with a batch size of 32 (atmo-c1-b32),
and 1.66 Mpps with a batch size of 1 (atmo-c1-b1).

Key-value store. Key-value stores are crucial building
blocks for modern datacenter systems ranging from social
networks [55] to key-value databases [56]. To evaluate At-
mosphere’s ability to meet the performance requirement of
datacenter applications, we develop a prototype of a network-
attached key-value store, kv-store. Our implementation relies
on an open addressing hash table with linear probing and
uses the FNV hash function. In our experiments, we compare
three implementations: a C version running on Linux with
the DPDK driver, an Atmosphere program that executes in a
process separate from the driver but utilizes a separate core
(atmo-c2) and as a separate process but on the same core with
batch size of 32 (atmo-c1-b32). We evaluate two hash table
sizes: 1 M and 8 M entries with three sets of key and value
pairs (<88, 88>, <168, 16B>, <32B,32B>).

Web server. We develop a simple web server, httpd, capa-
ble of serving static HT'TP context. The web server contin-
uously polls for incoming requests from open connections
in a round-robin manner, parses requests, and returns the
static web page. We compare httpd against one of the de facto
industry standard web servers, Nginx [57]. We configure the
wrk HTTP load generator [58] to dispatch requests for 10 sec-
onds using one thread and 20 concurrent open connections.
Nginx on Linux achieve 70.9 K requests per second, whereas
our implementation of httpd is able to serve 99.4 K requests
per second when httpd is directly linked to the device driver.

7 Related Work

Early verification efforts were aimed at attaining the highest
Al assurance rating defined by the “Orange Book” [59] but
remained largely unsuccessful due to limitations of existing
verification tools [60, 61, 62, 63]. SeL4 became the first system
to demonstrate a way to achieve verification of a practical
microkernel [1]. Verification of seL4 involved 180,000 lines of
proof code of the Isabelle/HOL theorem prover for 8,700 lines
of C and required 20 person-years (11 years for the proofs and
9 years for the development of supporting formal language
frameworks, proof tools, and libraries [1]). Similar to seL4,
Atmosphere uses pointer-centric design for ultimate perfor-
mance, yet leverages Verus for high-degree of automation.
CertiKOS [2] and pC/OS-1I [64] were aimed at verification of
concurrent systems with fine-grained locking through the

use of the Coq interactive theorem prover [27]. Verification
of CertiKOS and pC/OS-1I took 2 and 5.5 person-years, re-
spectively but required nearly the same proof-to-code ratio
as seL4. Although these systems demonstrate the level of
complexity that interactive theorem provers (ITP) can verify,
the verification effort remains high and the verification speed
is far from ideal, hindering the development experience.

Hyperkernel demonstrated a high degree of automation
through the use of SMT solvers but at the cost of severe lim-
itations in kernel functionality [7]. Despite the automation
offered by Z3, verification time is roughly 30 minutes on
quad-core i7-7700K [65].

Verified NrOS [24] suggests the use of Verus for verifi-
cation of operating systems and specifically for retrofitting
verification into the existing NrOS kernel incrementally [66].
At the time of writing, only the page table code was ver-
ified [51]. Unlike Atmosphere, NrOS follows the classical
hierarchical approach to permission management. Flat own-
ership in Atmosphere significantly lowers complexity of the
proofs by avoiding bounded unrolling and inductive proofs.

VeriSMo uses Verus to implement a verified security mod-
ule for confidential VMs on AMD SEV-SNP [23]. VeriSMo
proves functional correctness of the security module as well
as correctness of the information flow. Despite the large code-
base, the core of VeriSMo is semantically simple — most of
the systems state can be described in safe Rust with minimal
use of pointer references. As a result, verification of VeriSMo
does not hit scalability problems related to the verification
of complex, recursive data structures. We, on the other hand,
demonstrate how to handle semantic complexity of a typical
kernel.

8 Conclusions

Our work demonstrates that a collection of careful design
choices combined with modern automated verification tools
enables practical development of formally verified kernels.
A combination of pointer-centric design, flat permission or-
ganization and manual memory management allowed us to
develop Atmosphere in a manner similar to unsafe, unveri-
fied kernels and with an unexpectedly modest development
effort. We hope that our design and development experiences
can inspire a shift in how we as a community approach cor-
rectness, reliability, and security at the core of the systems
stack.

Acknowledgments

We would like to thank our shepherd, Zigiao Zhou, and
the anonymous SOSP’24, OSDI'25 and SOSP’25 reviewers
for numerous insights that helped us to improve this work.
This research is supported in part by the National Science
Foundation under Grant Numbers 2220410 and 2239615, and
Amazon.

References

(1]

(10]

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. seL4: Formal verification of an OS kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles (SOSP), October 11, 2009.
Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (New-
man) Wu, Jieung Kim, Vilhelm Sjéberg, and David
Costanzo. CertiKOS: An extensible architecture for
building certified concurrent OS kernels. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

Jean Yang and Chris Hawblitzel. Safe to the last in-
struction: Automated verification of a type-safe oper-
ating system. In Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), 2010.

Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun
Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill.
Ironclad Apps: End-to-end security via automated full-
system verification. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
October 2014.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob
R. Lorch, Bryan Parno, Michael L. Roberts, Srinath
Setty, and Brian Zill. IronFleet: Proving practical dis-
tributed systems correct. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP),
2015.

K. Rustan M. Leino. Dafny: An automatic program
verifier for functional correctness. In Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, 2010.
Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang,
Dylan Johnson, James Bornholt, Emina Torlak, and
Xi Wang. Hyperkernel: Push-button verification of an
OS kernel. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP), October 14, 2017.
Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-button verification of file systems
via crash refinement. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), November 2016.

Luke Nelson, James Bornholt, Ronghui Gu, Andrew
Baumann, Emina Torlak, and Xi Wang. Scaling sym-
bolic evaluation for automated verification of systems
code with Serval. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles (SOSP), 2019.
Oded Padon, Kenneth L. McMillan, Aurojit Panda,
Mooly Sagiv, and Sharon Shoham. Ivy: Safety veri-
fication by interactive generalization. In Proceedings

(11]

(12]

(14]

(17]

(18]

[20]

of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2016.
Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-
Karney, James Bornholt, Emina Torlak, and Xi Wang.
Nickel: A framework for design and verification of
information flow control systems. In Proceedings of
the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), October 2018.
Can Cebeci, Yonghao Zou, Diyu Zhou, George Can-
dea, and Clément Pit-Claudel. Practical verification of
system-software components written in standard C.
In Proceedings of the ACM SIGOPS 30th Symposium on
Operating Systems Principles (SOSP), 2024.

Philip Wadler. Linear types can change the world! In
Proceedings of the IFIP Working Group 2.2, 2.3 Working
Conference on Programming Concepts and Methods,
number 4, 1990.

Andrea Lattuada, Travis Hance, Chanhee Cho,
Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell,
Bryan Parno, and Chris Hawblitzel. Verus: Verifying
Rust programs using linear ghost types, OOPSLAL,
April 6, 2023.

Jialin Li, Andrea Lattuada, Yi Zhou, Jonathan
Cameron, Jon Howell, Bryan Parno, and Chris Haw-
blitzel. Linear types for large-scale systems verifica-
tion. Proceedings of the ACM on Programming Lan-
guages, (OOPSLAL1), April 2022.

Vytautas Astrauskas, Peter Miiller, Federico Poli, and
Alexander J. Summers. Leveraging Rust types for mod-
ular specification and verification. Proc. ACM Program.
Lang., (OOPSLA), October 2019.

Richard Bornat, Cristiano Calcagno, Peter O’Hearn,
and Matthew Parkinson. Permission accounting in sep-
aration logic. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 2005.

Peter Miiller, Malte Schwerhoff, and Alexander J.
Summers. Viper: A verification infrastructure for
permission-based reasoning. In Verification, Model
Checking, and Abstract Interpretation, 2016.

Vytautas Astrauskas, Aurel Bily, Jonas Fiala, Zachary
Grannan, Christoph Matheja, Peter Miiller, Federico
Poli, and Alexander J. Summers. The Prusti Project:
Formal verification for Rust. In NASA Formal Methods,
2022.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers,
and Derek Dreyer. RustBelt: Securing the foundations
of the Rust programming language. Proc. ACM Pro-
gram. Lang., POPL, December 27, 2017.

Verus-Lang. Recursive exec and proof functions,
proofs by induction. URL: https://verus-lang.github.
io/verus/guide/induction.html.

Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B. Giffin, Pat Pannuto, Prabal Dutta, and Philip

https://verus-lang.github.io/verus/guide/induction.html
https://verus-lang.github.io/verus/guide/induction.html

(23]

(31]

(32]

Levis. Multiprogramming a 64kB computer safely and
efficiently. In Proceedings of the 26th Symposium on Op-
erating Systems Principles (Shanghai, China) (SOSP),
2017.

Ziqiao Zhou, Anjali, Weiteng Chen, Sishuai Gong,
Chris Hawblitzel, and Weidong Cui. VeriSMo: A ver-
ified security module for Confidential VMs. In 18th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2024.

Matthias Brun, Reto Achermann, Tej Chajed, Jon How-
ell, Gerd Zellweger, and Andrea Lattuada. Beyond iso-
lation: OS verification as a foundation for correct ap-
plications. In Proceedings of the 19th Workshop on Hot
Topics in Operating Systems (HOTOS), June 22, 2023.
Verus-Lang. A verified doubly-linked list example in
Verus. URL: https://github.com/verus-lang/verus/blob/
main/examples/doubly_linked.rs.

The Rust Project. Reference cycles can leak memory.
URL: https://doc.rust-lang.org/book/ch15-06-
reference-cycles.html.

The Coq proof assistant. URL: https://coq.inria.fr/.
Tobias Nipkow, Markus Wenzel, and Lawrence C Paul-
son. Isabelle/HOL: A Proof Assistant for Higher-Order
Logic (Lecture Notes in Computer Science). 2002.
Leonardo de Moura, Soonho Kong, Jeremy Avigad,
Floris van Doorn, and Jakob von Raumer. The Lean
theorem prover (system description). In Automated
Deduction - CADE-25, 2015.

Andrea Lattuada, Travis Hance, Jay Bosamiya,
Matthias Brun, Chanhee Cho, Hayley LeBlanc, Pranav
Srinivasan, Reto Achermann, Tej Chajed, Chris Haw-
blitzel, Jon Howell, Jacob R. Lorch, Oded Padon, and
Bryan Parno. Verus: A practical foundation for sys-
tems verification. In Proceedings of the 30th Symposium
on Operating Systems Principles (SOSP). ACM, Novem-
ber 2024.

Nikhil Swamy, Catélin Hritcu, Chantal Keller, Aseem
Rastogi, Antoine Delignat-Lavaud, Simon Forest,
Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves
Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue,
and Santiago Zanella-Béguelin. Dependent types and
multi-monadic effects in f*. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL), 2016.

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine,
Bart Jacobs, and K. Rustan M. Leino. Boogie: A mod-
ular reusable verifier for object-oriented programs.
In Proceedings of the 4th international conference on
Formal Methods for Components and Objects (FMCO),
2005.

Leonardo de Moura and Nikolaj Bjerner. Z3: An effi-
cient SMT solver. In International Conference on Tools
and Algorithms for the Construction and Analysis of

(34]

(36]

(37]

(38]

(40]

[41]

(44]

(45]

[46]

Systems (TACAS) (Lecture Notes in Computer Science),
2008.

Liam O’Connor, Zilin Chen, Christine Rizkallah, Vin-
cent Jackson, Sidney Amani, Gerwin Klein, Toby
Murray, Thomas Sewell, and Gabriele Keller. Cogent:
Uniqueness types and certifying compilation. Journal
of Functional Programming, 2021.

Xavier Denis, Jacques-Henri Jourdan, and Claude
Marché. Creusot: A foundry for the deductive verifica-
tion of Rust programs. In Formal Methods and Software
Engineering, 2022.

Son Ho and Jonathan Protzenko. Aeneas: Rust verifi-
cation by functional translation. Proc. ACM Program.
Lang., (ICFP), August 2022.

John Boyland. Checking interference with fractional
permissions. In Static Analysis, 2003.

Paul Emmerich, Maximilian Pudelko, Simon Bauer,
and Georg Carle. User space network drivers. In Pro-
ceedings of the Applied Networking Research Workshop
(ANRW), 2018.

Vikram Narayanan, Tianjiao Huang, David Detweiler,
Dan Appel, Zhaofeng Li, Gerd Zellweger, and Anton
Burtsev. RedLeaf: Isolation and communication in a
safe Operating System. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2020.

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,
Sylvia Ratnasamy, and Scott Shenker. NetBricks: Tak-
ing the V out of NFV. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
November 2016.

Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt,
Andrew Warfield, Mark Williamson, et al. Safe hard-
ware access with the Xen virtual machine monitor. In
1st Workshop on Operating System and Architectural
Support for the on Demand IT InfraStructure (OASIS),
2004.

Willem de Bruijn and Herbert Bos. Beltway buffers:
Avoiding the OS traffic jam. In INFOCOM, 2008.
Anton Burtsev, Kiran Srinivasan, Prashanth Radhakr-
ishnan, Kaladhar Voruganti, and Garth R. Goodson.
Fido: Fast inter-virtual-machine communication for
enterprise appliances. In 2009 USENIX Annual Techni-
cal Conference (ATC), June 2009.

Andrew Ferraiuolo, Andrew Baumann, Chris Haw-
blitzel, and Bryan Parno. Komodo: Using verification
to disentangle secure-enclave hardware from software.
In Proceedings of the 26th Symposium on Operating Sys-
tems Principles (SOSP), 2017.

John Rushby. Noninterference, transitivity, and channel-
control security policies. 1992.

Joseph A. Goguen and Jose Meseguer. Unwinding and
inference control. In 1984 IEEE Symposium on Security
and Privacy, 1984.

https://github.com/verus-lang/verus/blob/main/examples/doubly_linked.rs
https://github.com/verus-lang/verus/blob/main/examples/doubly_linked.rs
https://doc.rust-lang.org/book/ch15-06-reference-cycles.html
https://doc.rust-lang.org/book/ch15-06-reference-cycles.html
https://coq.inria.fr/

(48]

[51]

(55]

Luke Nelson, James Bornholt, Arvind Krishnamurthy,
Emina Torlak, and Xi Wang. Noninterference speci-
fications for secure systems. SIGOPS Oper. Syst. Rev.,
(1), August 2020.

Robert Ricci, Eric Eide, and The CloudLab Team. In-
troducing CloudLab: Scientific infrastructure for ad-
vancing cloud architectures and applications. USENIX
;login: (6), December 2014.

CloudLab hardware info. urt: https://docs.cloudlab.
us/hardware.html.

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. Formally verified memory protec-
tion for a commodity multiprocessor hypervisor. In
Proceedings of the 30th USENIX Security Symposium.
30th USENIX Security Symposium (USENIX Security),
2021.

Recursive proof in Verified NrOS
map_frame_aux. URL: https : / / github . com /
matthias - brun / verified - nrkernel / blob /
8f30cf0f910e7606c3a0f633821acfdfde410cf4 / page -
table/impl_u/12_impl.rs#L947-L1562.

DPDK: Data Plane Development Kit. URL: https://
www.dpdk.org.

Intel Corporation. Storage Performance Development
Kit (SPDK). UrL: https://spdk.io.

Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable soft-
ware network load balancer. In Proceedings of the 13th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), March 2016.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing memcache at Facebook. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), April 2013.

Giuseppe DeCandia, Deniz Hastorun, Madan Jam-
pani, Gunavardhan Kakulapati, Avinash Lakshman,
Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s
highly available key-value store. In Proceedings of the
21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), 2007.

NGINX. NGINX: High performance load balancer, web
server, and reverse proxy. URL: https://www.nginx.
com.

wrk - a HTTP benchmarking tool. URL: https://github.
com/wg/wrk.

Department of defense trusted computer system evalua-

tion criteria. In The ‘Orange Book’ Series. 1985.
B. D. Gold, R. R. Linde, and P. F. Cudney. KVM/370 in

retrospect. In 1984 IEEE Symposium on Security and
Privacy, 1984.

P.A. Karger, M.E. Zurko, DW. Bonin, A.H. Mason, and
C.E. Kahn. A retrospective on the VAX VMM security
kernel. IEEE Transactions on Software Engineering, (11),
1991.

L.]. Fraim. Scomp: A solution to the multilevel security
problem. Computer, (7), July 1983.

W. R. Schockley, T. F. Tao, and M. F. Thompson. An
overview of the GEMSOS Class A1 technology and
application experience. In Proceedings of the 11th Na-
tional Computer Security Conference, October 1988.
Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang,
Hui Zhang, and Zhaohui Li. A practical verification
framework for preemptive OS kernels. In Computer
Aided Verification, 2016.

The UNSAT group. Hyperkernel git repository. URL:
https://github.com/uw-unsat/hyperkernel.

Ankit Bhardwaj, Chinmay Kulkarni, Reto Achermann,
Irina Calciu, Sanidhya Kashyap, Ryan Stutsman, Amy
Tai, and Gerd Zellweger. NrOS: Effective replication
and sharing in an operating system. In 15th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), July 2021.

https://docs.cloudlab.us/hardware.html
https://docs.cloudlab.us/hardware.html
https://github.com/matthias-brun/verified-nrkernel/blob/8f30cf0f910e7606c3a0f633821acfdfde410cf4/page-table/impl_u/l2_impl.rs#L947-L1562
https://github.com/matthias-brun/verified-nrkernel/blob/8f30cf0f910e7606c3a0f633821acfdfde410cf4/page-table/impl_u/l2_impl.rs#L947-L1562
https://github.com/matthias-brun/verified-nrkernel/blob/8f30cf0f910e7606c3a0f633821acfdfde410cf4/page-table/impl_u/l2_impl.rs#L947-L1562
https://github.com/matthias-brun/verified-nrkernel/blob/8f30cf0f910e7606c3a0f633821acfdfde410cf4/page-table/impl_u/l2_impl.rs#L947-L1562
https://www.dpdk.org
https://www.dpdk.org
https://spdk.io
https://www.nginx.com
https://www.nginx.com
https://github.com/wg/wrk
https://github.com/wg/wrk
https://github.com/uw-unsat/hyperkernel

	Abstract
	1 Introduction
	2 Background: Verus
	3 System Architecture
	4 Verification
	4.1 Flat, Pointer-Centric Design
	4.2 Manual Memory Management
	4.3 Noninterference

	5 Trusted Computing Base
	6 Evaluation
	6.1 Verification complexity
	6.2 Impact of flat design
	6.3 Development speed and effort
	6.4 Microbenchmarks
	6.5 Device Drivers
	6.6 Application Benchmarks

	7 Related Work
	8 Conclusions
	Acknowledgments

